Ultrasonic velocities have been measured in single phase Bi_1.7 Pb_0.3Sr2CaCu2O8+x and Bi1.7Pb0.3Sr2Ca2O10+x polycrystalline samples. Anomalous changes of both longitudinal and transverse velocities were observed near...Ultrasonic velocities have been measured in single phase Bi_1.7 Pb_0.3Sr2CaCu2O8+x and Bi1.7Pb0.3Sr2Ca2O10+x polycrystalline samples. Anomalous changes of both longitudinal and transverse velocities were observed near 200K, which indicates that some structural phase transitio might occur. The elastic constants of these samples have been determined from the measured ultrasonic velocity data, which are much smaller than those of YBa2 Cu3 O7-y and BaTiO3, manifesting that the interlayer coupling will dramatically decrease when the c - axes of the unit cells of these perovstite-like multilayer ceramics increase. The values of Poisson ratio, however, of those ceramics are very close, implying similar interatomic bonding forces. Corrected to void-free state, the Debye temperature of these materials is estirnated as 270 ±20k. The temperature dependence of Debye temperatures for these materials is also calculated by using the same method and reported for the first time.展开更多
基金The project is supported by the National Center of ResearchDevelopment on Supperconductivity of China+1 种基金the National Science Foundation of Chinathe Third World Academy of Sciences
文摘Ultrasonic velocities have been measured in single phase Bi_1.7 Pb_0.3Sr2CaCu2O8+x and Bi1.7Pb0.3Sr2Ca2O10+x polycrystalline samples. Anomalous changes of both longitudinal and transverse velocities were observed near 200K, which indicates that some structural phase transitio might occur. The elastic constants of these samples have been determined from the measured ultrasonic velocity data, which are much smaller than those of YBa2 Cu3 O7-y and BaTiO3, manifesting that the interlayer coupling will dramatically decrease when the c - axes of the unit cells of these perovstite-like multilayer ceramics increase. The values of Poisson ratio, however, of those ceramics are very close, implying similar interatomic bonding forces. Corrected to void-free state, the Debye temperature of these materials is estirnated as 270 ±20k. The temperature dependence of Debye temperatures for these materials is also calculated by using the same method and reported for the first time.