期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc Oxide Channel
1
作者 贾泽 徐建龙 +2 位作者 吴肖 张明明 刘俊杰 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期152-156,共5页
We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized do... We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized doping concentration of 1% is applied to reduce the channel resistance of the channel layer, thus guaranteeing a large enough load capacity of the transistor. The hysteresis loops of the Pt/PZT/AZO/Ti/Pt capacitor are measured and compared with a Pt/PZT/Pt capacitor, indicating that the remnant polarization is almost 40 μC/cm^2 and the polarization is saturated at 20 V. The measured capacitance-voltage properties are analyzed as a result of the electron depletion and accumulation switching operation conducted by the modulation of PZT on AZO channel resistance caused by the switchable remnant polarization of PZT. The switching properties of the AZO channel layer are also proved by the current-voltage transfer curves measured in the back-gated MOFM ferroelectric FET, which also show a drain current switching ratio up to about 100 times. 展开更多
关键词 PZT AZO Pt A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc oxide channel Al
下载PDF
Delayed treatment of secondary degeneration following acute optic nerve transection using a combination of ion channel inhibitors
2
作者 Nathanael J.Yates Marcus K.Giacci +5 位作者 Ryan L. O'Hare Doig Wissam Chiha Bethany E. Ashworth Jade Kenna Carole A. Bartlett Melinda Fitzgerald 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期307-316,共10页
Studies have shown that a combined application of several ion channel inhibitors immediately after central nervous system injury can inhibit secondary degeneration. However, for clinical use, it is necessary to determ... Studies have shown that a combined application of several ion channel inhibitors immediately after central nervous system injury can inhibit secondary degeneration. However, for clinical use, it is necessary to determine how long after injury the combined treatment of several ion channel inhibitors can be delayed and efficacy maintained. In this study, we delivered Ca^2+ entry-inhibiting P2X7 receptor antagonist oxidized-ATP and AMPA receptor antagonist YM872 to the optic nerve injury site via an iPRECIO-@ pump immediately, 6 hours, 24 hours and 7 days after partial optic nerve transection surgery. In addition, all of the ion channel inhibitor treated rats were administered with calcium channel antagonist lomerizine hydrochloride. It is important to note that as a result of implantation of the particular pumps required for programmable delivery of therapeutics directly to the injury site, seromas occurred in a significant proportion of animals, indicating infection around the pumps in these animals. Improvements in visual function were observed only when treatment was delayed by 6 hours; phosphorylated Tau was reduced when treatment was delayed by 24 hours or 7 days. Improvements in structure of node/paranode of Ranvier and reductions in oxidative stress indicators were also only observed when treatment was delayed for 6 hours, 24 hours, or 7 days. Benefits of ion channel inhibitors were only observed with time-delayed treatment, suggesting that delayed therapy of Ca^2+ ion channel inhibitors produces better neuroprotective effects on secondary degeneration, at least in the presence of seromas. 展开更多
关键词 nerve regeneration optic nerve injury neurotrauma secondary degeneration seromas calcium channel inhibitor node of Ranvier Tau phosphorylation lipid peroxidation oxidative stress neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部