期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Recent advances in inkjet printing synthesis of functional metal oxides 被引量:3
1
作者 Xiaonao Liu Tzyh-Jong Tarn +1 位作者 Fenfen Huang Jie Fan 《Particuology》 SCIE EI CAS CSCD 2015年第2期1-13,共13页
lnkjet printing (IJP) synthesis has emerged as a useful technique for the fabrication of functional metal oxides in the fields of nanotechnology and materials science. In this paper, we will review the fundamental s... lnkjet printing (IJP) synthesis has emerged as a useful technique for the fabrication of functional metal oxides in the fields of nanotechnology and materials science. In this paper, we will review the fundamental state-of-the-art principles of the special ink formulations used for IJP synthesis of functional metal oxides and the applications of these oxides. 展开更多
关键词 inkjet printing Metal oxide Catalysis Sensor ink
原文传递
3D printing of architectured graphene-based aerogels by cross-linking GO inks with adjustable viscoelasticity for energy storage devices 被引量:2
2
作者 San-Can Han Jia-Le Quan +4 位作者 Fu-Guo Zhou Yu-Hua Xue Na Li Feng-Yu Li Ding Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期971-981,共11页
Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks ... Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by microextrusion printing.In this work,ultra-low-concentration graphene oxide(GO)inks of~15 mg·ml-1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking(direct ink writing).The rheological behavior of the GO strategy by cations,which is the lowest concentration to achieve direct ink writing inks,could be adjusted from 1×10^(4) to 1×10^(5) Pa·s^(-1) with different concentrations of cations due to strong cross-linking networks between GO sheets and cations.Meanwhile,the specific strength and electrical conductivity of 3D-printed graphene architecture are notably enhanced,reaching up to 51.7×10^(3) N·m·kg^(-1)and 119 S·m^(-1),which are superior to conventional graphene aerogels.Furthermore,3D printing graphene-based architecture assembled in micro-superc apacitor exhibits excellent electrochemical performance,which can be ascribed to the effective ion transportation through the interconnected networks.The strategy demonstrated is useful in the design of complex-shaped,graphene-based architectures for scalable manufacturing of practical energy storage applications. 展开更多
关键词 Three-dimensional(3D)printing Graphene oxide(GO)inks Cross-linking strategy Graphene-based architecture
原文传递
Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach
3
作者 Yusufkadie Yibi Jiawei Chen +2 位作者 Jie Xue Jizhong Song Haibo Zeng 《Science Bulletin》 SCIE EI CAS CSCD 2017年第10期693-699,共7页
Recently, the localized surface plasmon resonance (LSPR) concept was expanded from noble metals to doped semiconductor nanocrystals (NCs). However, the strengthening of the intrinsically very weak LSPR in NCs rema... Recently, the localized surface plasmon resonance (LSPR) concept was expanded from noble metals to doped semiconductor nanocrystals (NCs). However, the strengthening of the intrinsically very weak LSPR in NCs remains a great challenge for its applications in optics, electronics and optoelectronics fields. In this work, we report on the remarkable strengthening and controllability of LSPR in ZnO through a dual-doping strategy. First, high quality In-doped ZnO (IZO) NCs with intense LSPR were synthesized by a simple single-pot method. Importantly, the LSPR can be tuned by simply adjusting the concentration of In dopant, as well as by UV light irradiation (photo-induced doping). The pattern of electricity of an IZO NC film matches the shift of LSPR independent of dopant concentration. The UV light irradiation clearly enhanced the electrical properties of the films (350 fl/sq) due to increase carrier density explained by LSPR and confirmed by X-ray photoelectron spectroscopy, The IZO NCs can be easily dispersed in various organic solvents and serve as inks for assembling uniform films via solution processes. These IZO NC ink is promising for application in next-generation solution-based field effect transistors and other optoelec- tronic devices. 展开更多
关键词 Doped zinc oxide Colloidal nanocrystals LSPR Electrical properties UV treatment ink
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部