Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon...Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.展开更多
The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approxima...The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approximation(LDA) and generalized gradient approximation(GGA).The calculated ground state quantities,such as lattice constant(α_0),ground state energy(E),bulk modulus(S),and their pressure derivative(B_p) are in reasonable agreement with the present analytical and previous theoretical results and available experimental data.Based on several elastic and mechanical parameters,the structural stability,hardness,stiffness and the brittle and ductile behaviors are discussed,which reveal that protactiniumbased oxide series of perovskites is mechanically stable and possesses weak resistance to shear deformation compared with resistance to unidirectional compression while flexible and covalent behaviors are dominated in them.The analysis of band profile through Trans-Blaha modified Becke-Johnson(TB-mBJ) potential highlights the underestimation of bandgap with traditional density functional theory(DFT) approximation.Specific contribution of electronic states is investigated by means of total and partial density of states and it can be evaluated that both compounds are(Γ-Γ) direct bandgap semiconductors.All fundamental optical properties are analyzed while attention is paid to absorption and reflection spectra to explore extensive absorptions and reflections of these compounds in high frequency regions.The present method represents an influential approach to calculating the whole set of elastic,mechanical,and opto-electronic parameters,which would conduce to the understanding of various physical phenomena and empower the device engineers to implement these materials in flexible opto-electronic applications.展开更多
Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite ox...Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite oxides,(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2) with n=5,8,and 12(LSTNn) for application as catalysts of CO_(2) electrolysis with the exsolution of Ni nanoparticles through a simple in-situ growth method.It is found that the density,size,and distribution of exsolved Ni nanoparticles are determined by the number of n in LSTNn due to the different stack structures of TiO_6 octahedra along the c axis.The Ni doping in LSTNn significantly improved the electrochemical activity by increasing oxygen vacancies,and the Ni metallic nanoparticles afford much more active sites.The results show that LSTNn cathodes can successfully be manipulated the activity by controlling both the n number and Ni exsolution.Among these LSTNn(n=5,8,and 12),LSTN8 renders a higher activity for electrolysis of CO_(2) with a current density of 1.50A cm^(-2)@2.0 V at 800℃ It is clear from these results that the number of n in(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2)with Ni-doping is a key factor in controlling the electrochemical performance and catalytic activity in SOEC.展开更多
Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combina...Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combinations of cations A,B’,and B",which leading to tremendous candidates.In this study,we comprehensively screened stable oxide double perovskite A2 B’B"O6 from a pool of 2,018 perovskite candidates using a high-throughput computational approach.By considering a tolerance factor(t)-octahedral factor(μ) phase diagram,138 candidates with Fm 3 m, P21/c,and R3 c phases were selected and systematically studied via first-principles calculations based on density functional theory.The screening procedure finally predicted the existence of 21 stable perovskites,and 14 among them have never been reported.Verification with existing experimental results demonstrates that the prediction accuracy for perovskite formability is approximately 90%.The predicted oxide double perovskites exhibit quasi-direct bandgaps ranging from 0 to 4.4 eV with a significantly small direct-indirect bandgap difference,balanced electron and hole effective masses,and strong optical absorptions.The newly predicted oxide double perovskites may enlarge the pool of material candidates for applications in optoelectronics and photocatalysis.This study provides a route for computational screening of novel perovskites for functional applications.展开更多
The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we...The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis.展开更多
Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of...Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction.展开更多
Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic perf...Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic performance and electrochemical behavior of complex metal oxides,especially perovskite oxides,is rarely reported.Here,the inorganic perovskite oxide Ag-doped(La_(0.8)Sr_(0.2))_(0.95)Ag_(0.05)MnO_(3-δ)(LSA0.05M)is reported as an efficient electrocatalyst for ECR to CO for the first time,which exhibits a Faradaic efficiency(FE)of 84.3%,a remarkable mass activity of 75Ag^(-1)(normalized to the mass of Ag),and stability of 130 h at a moderate overpotential of 0.79 V.The LSA0.05M catalyst experiences structure reconstruction during ECR,creating the in operando-formed interface between the perovskite and the evolved Ag phase.The evolved Ag is uniformly distributed with a small particle size on the perovskite surface.Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite-Ag interface provides adsorption sites for CO_(2) and accelerates the desorption of the*CO intermediate to enhance ECR.This study presents a novel high-performance perovskite catalyst for ECR andmay inspire the future design of electrocatalysts via the in operando formation of metal-metal oxide interfaces.展开更多
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a...A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.展开更多
The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The...The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.展开更多
In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x ...In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode.展开更多
High-temperature solid-state electrolyte is a key component of several important electrochemical devices,such as oxygen sensors for automobile exhaust control,solid oxide fuel cells(SOFCs) for power generation,and sol...High-temperature solid-state electrolyte is a key component of several important electrochemical devices,such as oxygen sensors for automobile exhaust control,solid oxide fuel cells(SOFCs) for power generation,and solid oxide electrolysis cells for H_(2) production from water electrolysis or CO_(2) electrochemical reduction to value-added chemicals.In particular,internal diffusion of protons or oxygen ions is a fundamental and crucial issue in the research of SOFCs,hypothetically based on either oxygen-ionconducting electrolytes or proton-conducting electrolytes.Up to now,some electrolyte materials based on fluorite or perovskite structure were found to show certain degree of dual-ion transportation capability,while in available electrolyte database,particularly in the field of SOFCs,such dual-ion conductivity was seriously overlooked.Actually,few concerns arising to the simultaneous proton and oxygen-ion conductivities in electrolyte of SOFCs inevitably induce various inadequate and confusing results in literature.Understanding dual-ion transportation behavior in electrolyte is indisputably of great importance to explain some unusual fuel cell performance as reported in literature and enrich the knowledge of solid state ionics.On the other hand,exploration of novel dual-ion conducting electrolytes will benefit the development of SOFCs.In this review,we provide a comprehensive summary of the understanding of dual-ion transportation in solid electrolyte and recent advances of dual-ion conducting SOFCs.The oxygen ion and proton conduction mechanisms at elevated temperature inside oxide-based electrolyte materials are first introduced,and then(mixed) oxygen ion and proton conduction behaviors of fluorite and perovskite-type oxides are discussed.Following on,recent advances in the development of dual-ion conducting SOFCs based on fluorite and perovskite-type single-phase or composite electrolytes,are reviewed.Finally,the challenges in the development of dual-ion conducting SOFCs are discussed and future prospects are proposed.展开更多
Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and s...Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply.展开更多
The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,...The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,we highlight a new halogen-chlorine(Cl)-anion doping strategy to boost the OER activity of perovskite oxides.As a proof-of-concept,proper Cl doping at the oxygen site of LaFeO3(LFO) perovskite can induce multiple favorable characteristics for catalyzing the OER,including rich oxygen vacancies,increased electrical conductivity and enhanced Fe-O covalency.Benefiting from these factors,the LaFeO2.9-δCl0.1(LFOCl) perovskite displays significant intrinsic activity enhancement by a factor of around three relative to its parent LFO.This work uncovers the effect of Cl-anion doping in perovskites on promoting OER performance and paves a new way to design highly efficient electrocatalysts.展开更多
ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen...ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.展开更多
A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was...A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.展开更多
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr...The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.展开更多
Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential ...Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.展开更多
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), ...An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.展开更多
In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respec...In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respectively.Furthermore,a series of MnO_(x)(SY)-n and GdMnO_(3)(SY)-n(n=0.05,0.10,1.00,4.00,n represents the dilute HNO_(3) concentration)catalysts are fabricated by acid treatment of MnO_(x)(SY)and GdMnO_(3)(SY)samples and catalytic activities of oxygenated VOCs oxidation over all the prepared catalysts are investigated.Catalytic evaluation results show that acid-treated MnO_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples perform the optimum VOCs removal efficiency respectively,which may be attributed to their obvious enhancement of physicochemical properties.In detail,Mn O_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples exhibit the larger specific surface area,bigger amount of surface high-valence metal ions(Mn^(4+),Co^(3+),Ni^(3+)),more abundant adsorbed oxygen species and better low-temperature reducibility,which can play a crucial role in the significant improvement of VOCs oxidation.In situ DRIFTS results imply that the possible main intermediates are-OCO,-COO and-C-O species produced during VOCs oxidation.Possible by-products are further determined via TD/GC-MS analysis.展开更多
Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanat...Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides.展开更多
基金This study was supported by the National Research Foundation of Korea(NRF-2021R1C1C1010233)funded by the Korean government(MSIT)+1 种基金This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant(No.G032542411)funded by the Korea Ministry of Trade,Industry,and Energy(MOTIE).
文摘Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.
文摘The structural,elastic,mechanical,electronic,and optical properties of KPaO_3 and RbPaO_3 compounds are investigated from first-principles calculations by using the WIEN2 k code in the frame of local density approximation(LDA) and generalized gradient approximation(GGA).The calculated ground state quantities,such as lattice constant(α_0),ground state energy(E),bulk modulus(S),and their pressure derivative(B_p) are in reasonable agreement with the present analytical and previous theoretical results and available experimental data.Based on several elastic and mechanical parameters,the structural stability,hardness,stiffness and the brittle and ductile behaviors are discussed,which reveal that protactiniumbased oxide series of perovskites is mechanically stable and possesses weak resistance to shear deformation compared with resistance to unidirectional compression while flexible and covalent behaviors are dominated in them.The analysis of band profile through Trans-Blaha modified Becke-Johnson(TB-mBJ) potential highlights the underestimation of bandgap with traditional density functional theory(DFT) approximation.Specific contribution of electronic states is investigated by means of total and partial density of states and it can be evaluated that both compounds are(Γ-Γ) direct bandgap semiconductors.All fundamental optical properties are analyzed while attention is paid to absorption and reflection spectra to explore extensive absorptions and reflections of these compounds in high frequency regions.The present method represents an influential approach to calculating the whole set of elastic,mechanical,and opto-electronic parameters,which would conduce to the understanding of various physical phenomena and empower the device engineers to implement these materials in flexible opto-electronic applications.
基金supported by the National Natural Science Foundation of China (51877173)the Key R&D Project of Shaanxi Province (2023-YBGY-057)+1 种基金the State Key Laboratory of Electrical Insulation and Power Equipment (EIPE22314, EIPE22306)the Natural Science Basic Research Program of Shaanxi (2023-JC-QN-0483)。
文摘Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite oxides,(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2) with n=5,8,and 12(LSTNn) for application as catalysts of CO_(2) electrolysis with the exsolution of Ni nanoparticles through a simple in-situ growth method.It is found that the density,size,and distribution of exsolved Ni nanoparticles are determined by the number of n in LSTNn due to the different stack structures of TiO_6 octahedra along the c axis.The Ni doping in LSTNn significantly improved the electrochemical activity by increasing oxygen vacancies,and the Ni metallic nanoparticles afford much more active sites.The results show that LSTNn cathodes can successfully be manipulated the activity by controlling both the n number and Ni exsolution.Among these LSTNn(n=5,8,and 12),LSTN8 renders a higher activity for electrolysis of CO_(2) with a current density of 1.50A cm^(-2)@2.0 V at 800℃ It is clear from these results that the number of n in(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2)with Ni-doping is a key factor in controlling the electrochemical performance and catalytic activity in SOEC.
基金the funding support from the National Key Research and Development Program of China(Grant 2016YFB0700700)National Natural Science Foundation of China(Grants 11674237,11974257)+1 种基金Priority Academic program Development of Jiangsu Higher Education Institutions(PAPD)Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,China。
文摘Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combinations of cations A,B’,and B",which leading to tremendous candidates.In this study,we comprehensively screened stable oxide double perovskite A2 B’B"O6 from a pool of 2,018 perovskite candidates using a high-throughput computational approach.By considering a tolerance factor(t)-octahedral factor(μ) phase diagram,138 candidates with Fm 3 m, P21/c,and R3 c phases were selected and systematically studied via first-principles calculations based on density functional theory.The screening procedure finally predicted the existence of 21 stable perovskites,and 14 among them have never been reported.Verification with existing experimental results demonstrates that the prediction accuracy for perovskite formability is approximately 90%.The predicted oxide double perovskites exhibit quasi-direct bandgaps ranging from 0 to 4.4 eV with a significantly small direct-indirect bandgap difference,balanced electron and hole effective masses,and strong optical absorptions.The newly predicted oxide double perovskites may enlarge the pool of material candidates for applications in optoelectronics and photocatalysis.This study provides a route for computational screening of novel perovskites for functional applications.
基金financially supported by the National Natural Science Foundation of China (U2032157)the Natural Science Foundation of Jiangsu Province (BK20201425)。
文摘The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis.
基金funding from the National Key R&D Program of China(2020YFB1505603)the Natural Science Foundation of China(22075086,22138005,22141001)the Guangdong Basic and Applied Basic Research Foundation(2019A1515011512,2020A1515011157,2021A1515010172,2022A1515010980)。
文摘Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction.
基金Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology Organisation,Grant/Award Number:MI8046+1 种基金Max Planck-POSTECH-Hsinchu Center for Complex Phase MaterialsHigh-Performance Computing Center of Nanjing Tech University。
文摘Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic performance and electrochemical behavior of complex metal oxides,especially perovskite oxides,is rarely reported.Here,the inorganic perovskite oxide Ag-doped(La_(0.8)Sr_(0.2))_(0.95)Ag_(0.05)MnO_(3-δ)(LSA0.05M)is reported as an efficient electrocatalyst for ECR to CO for the first time,which exhibits a Faradaic efficiency(FE)of 84.3%,a remarkable mass activity of 75Ag^(-1)(normalized to the mass of Ag),and stability of 130 h at a moderate overpotential of 0.79 V.The LSA0.05M catalyst experiences structure reconstruction during ECR,creating the in operando-formed interface between the perovskite and the evolved Ag phase.The evolved Ag is uniformly distributed with a small particle size on the perovskite surface.Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite-Ag interface provides adsorption sites for CO_(2) and accelerates the desorption of the*CO intermediate to enhance ECR.This study presents a novel high-performance perovskite catalyst for ECR andmay inspire the future design of electrocatalysts via the in operando formation of metal-metal oxide interfaces.
基金supported by the National Key Research and Development Program of China(2022YFE0101600)the National Natural Science Foundation of China(U23A20117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20220002,BE2022024)the Leading Talents Program of Zhejiang Province(2024C03223)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.
文摘The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.
文摘In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode.
基金supported by the Australian Research Council Discovery Projects(DP150104365 and DP160104835)the financial support by the China Scholarship Council(201808340038) for his visiting at Curtin University,Australiathe ARC Discovery Early Career Researcher Award(DE180100773)。
文摘High-temperature solid-state electrolyte is a key component of several important electrochemical devices,such as oxygen sensors for automobile exhaust control,solid oxide fuel cells(SOFCs) for power generation,and solid oxide electrolysis cells for H_(2) production from water electrolysis or CO_(2) electrochemical reduction to value-added chemicals.In particular,internal diffusion of protons or oxygen ions is a fundamental and crucial issue in the research of SOFCs,hypothetically based on either oxygen-ionconducting electrolytes or proton-conducting electrolytes.Up to now,some electrolyte materials based on fluorite or perovskite structure were found to show certain degree of dual-ion transportation capability,while in available electrolyte database,particularly in the field of SOFCs,such dual-ion conductivity was seriously overlooked.Actually,few concerns arising to the simultaneous proton and oxygen-ion conductivities in electrolyte of SOFCs inevitably induce various inadequate and confusing results in literature.Understanding dual-ion transportation behavior in electrolyte is indisputably of great importance to explain some unusual fuel cell performance as reported in literature and enrich the knowledge of solid state ionics.On the other hand,exploration of novel dual-ion conducting electrolytes will benefit the development of SOFCs.In this review,we provide a comprehensive summary of the understanding of dual-ion transportation in solid electrolyte and recent advances of dual-ion conducting SOFCs.The oxygen ion and proton conduction mechanisms at elevated temperature inside oxide-based electrolyte materials are first introduced,and then(mixed) oxygen ion and proton conduction behaviors of fluorite and perovskite-type oxides are discussed.Following on,recent advances in the development of dual-ion conducting SOFCs based on fluorite and perovskite-type single-phase or composite electrolytes,are reviewed.Finally,the challenges in the development of dual-ion conducting SOFCs are discussed and future prospects are proposed.
基金the Chinese Natural Science Foundation(Project No.20306016)
文摘Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply.
基金financially supported by the Australian Research Council (Discovery Early Career Researcher Award No. DE190100005)the support of the Australian Research Council (Grant No. FT160100207)the ontinued support from the Queensland University of Technology (QUT) through the centre for Materials Science。
文摘The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,we highlight a new halogen-chlorine(Cl)-anion doping strategy to boost the OER activity of perovskite oxides.As a proof-of-concept,proper Cl doping at the oxygen site of LaFeO3(LFO) perovskite can induce multiple favorable characteristics for catalyzing the OER,including rich oxygen vacancies,increased electrical conductivity and enhanced Fe-O covalency.Benefiting from these factors,the LaFeO2.9-δCl0.1(LFOCl) perovskite displays significant intrinsic activity enhancement by a factor of around three relative to its parent LFO.This work uncovers the effect of Cl-anion doping in perovskites on promoting OER performance and paves a new way to design highly efficient electrocatalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.21433003,21805064 and 21773049)National Key Research and Development Program of China(Program No.2016YFB0101207)。
文摘ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.
文摘A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.
基金financial supports from the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202126)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB17020400)。
文摘The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.
基金supported by the National Natural Science Foundation of China(Project No.21908106 and 21878158)the Jiangsu Natural Science Foundation(Project No.BK20190682)+2 种基金the Program for Jiangsu Specially Appointed Professorsthe Funding from State Key Laboratory of Materials-Oriented Chemical Engineering(Project No.ZK201808)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.
文摘An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.
基金supported by the National Natural Science Foundation of China(Grant numbers 21876107,21607103)。
文摘In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respectively.Furthermore,a series of MnO_(x)(SY)-n and GdMnO_(3)(SY)-n(n=0.05,0.10,1.00,4.00,n represents the dilute HNO_(3) concentration)catalysts are fabricated by acid treatment of MnO_(x)(SY)and GdMnO_(3)(SY)samples and catalytic activities of oxygenated VOCs oxidation over all the prepared catalysts are investigated.Catalytic evaluation results show that acid-treated MnO_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples perform the optimum VOCs removal efficiency respectively,which may be attributed to their obvious enhancement of physicochemical properties.In detail,Mn O_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples exhibit the larger specific surface area,bigger amount of surface high-valence metal ions(Mn^(4+),Co^(3+),Ni^(3+)),more abundant adsorbed oxygen species and better low-temperature reducibility,which can play a crucial role in the significant improvement of VOCs oxidation.In situ DRIFTS results imply that the possible main intermediates are-OCO,-COO and-C-O species produced during VOCs oxidation.Possible by-products are further determined via TD/GC-MS analysis.
文摘Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides.