It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorpti...It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorption of CH4 over the surface of SrCO3 was attributed to the strong basicity of SrO sites resulted from decomposition of SrCO_3展开更多
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur...Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.展开更多
The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy o...The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.展开更多
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe...The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are ...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.展开更多
The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was pro...The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.展开更多
This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were chara...This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were characterized with several different techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and Raman, when they were fresh from sputter chamber and aged after years, respectively, in order to determine their structure and composition. It finds that a small amount of sodium occurred on the surface of vanadium dioxide films, which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature. It also finds that aging for years significantly affected the nonstoichiometry of vanadium dioxide films, thus inducing much change in Raman modes.展开更多
Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is f...Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is formed especially after long periods of air exposure.Nickel surfaces are much less reactive to pure water than to air.The thermal stability of the surface oxides is related to oxidative temperature.The surface species of oxides formed by air exposure at temperatures below 120℃ can be reduced into nickel metal after heating the sample in vacuum at 300℃ for only 10 minutes (in the case of room temperature) to 1 h (in the case of 120℃). This reduction is caused by reaction with surface carbon contaminants.However,the surface species of nickel oxides formed by air exposure with heating at temperatures above 200℃ can not be reduced into metal after heating the sample in vacuum at 300℃ for 1h.展开更多
Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What ...Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis.展开更多
According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In additi...According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C_2O, which show optical anisotropy. To study the optical properties of C_2O nanostructures, time-dependent density functional theory(TDDFT) is used. The C_2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C_2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.展开更多
This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemica...This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemical analysis ( ESC A ) , determination of surface hydroxy radical, Fourier-transfer infrared spectrophotometry (FT-IR ) , electron paramagnetic resonance (EPR), inductively coupled Plasma torch (ICP), etc. The emphasis is laid upon the exploration of HTO surface and a discussion about the adsorption micromechanism.展开更多
hhen ammonium sulfate-iron oxide is treated below 573 K, ammonium sulfate can spontaneously desperse on the surface of iron oxide. Simultaneously ammonium sulfate decomposes to some extent. During or after the dispers...hhen ammonium sulfate-iron oxide is treated below 573 K, ammonium sulfate can spontaneously desperse on the surface of iron oxide. Simultaneously ammonium sulfate decomposes to some extent. During or after the dispersion, sulfate ion can interact with Fe atom on the surface of iron oxide to form a sort of surface sulfato complex of Fe and thus is transformed from the isolated into the bidentately bound form. Above 573 K the sulfato complex of Fe will gradually decompose with a further increase in temperature.展开更多
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M...Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic.展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structure...The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.展开更多
Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has be...Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.展开更多
Coal-water interactions have profound influences on gas extraction from coal and coal utilization.Experimental measurements on three coals using X-ray photoelectron spectroscopy(XPS),low-temperature nitrogen adsorptio...Coal-water interactions have profound influences on gas extraction from coal and coal utilization.Experimental measurements on three coals using X-ray photoelectron spectroscopy(XPS),low-temperature nitrogen adsorption and dynamic water vapor sorption(DVS)were conducted.A mechanism-based isotherm model was proposed to estimate the water vapor uptake at various relative humidities,which is well validated with the DVS data.The validated isotherm model of sorption was further used to derive the isosteric heat of water vapor sorption.The specific surface area of coal pores is not the determining parameter that controls water vapor sorption at least during the primary adsorption stage.Oxidation degree dominates the primary adsorption,and which togethering with the cumulative pore volume determine the secondary adsorption.Higher temperature has limited effects on primary adsorption process.The isosteric heat of water adsorption decreases as water vapor uptake increases,which is found to be close to the latent heat of bulk water condensation at higher relative humidity.The results confirmed that the primary adsorption is controlled by the stronger bonding energy while the interaction energy between water molecules during secondary adsorption stage is relatively weak.However,the thermodynamics of coal-water interactions are complicated since the internal bonding interactions within the coal are disrupted at the same time as new bonding interactions take place within water molecules.Coal has a shrinkage/swelling colloidal structure with moisture loss/gain and it may exhibit collapse behavior with some collapses irreversible as a function of relative humidity,which further plays a significant role in determining moisture retention.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalc...In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
文摘It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorption of CH4 over the surface of SrCO3 was attributed to the strong basicity of SrO sites resulted from decomposition of SrCO_3
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066,91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)L.P.thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Centre for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.
基金Project supported by the High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),ChinaProjects(51304054+1 种基金51364002)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of Guangxi Colleges and University Key Laboratory of Minerals Engineering in Guangxi University,China
文摘The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.
基金the National Natural Science Foundation of China(Nos.52204298 and 52004335)the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)+1 种基金the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the Science Research Initiation Fund of Central South University(No.202044019).
文摘The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
基金supported by the National Natural Science Foundation of China(62074052,61974173,52072327)the Joint Talent Cultivation Funds of NSFC-HN(U1904192)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.
基金This work was financially supported by the Doctoral Foundation of Xi'an Jiaotong University (No. DFXJTU2004-04).
文摘The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.
基金supported by the National Natural Science Foundation of China (Grant No 60776039)China Agricultural University Foundation (Grant No 2007037)
文摘This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were characterized with several different techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and Raman, when they were fresh from sputter chamber and aged after years, respectively, in order to determine their structure and composition. It finds that a small amount of sodium occurred on the surface of vanadium dioxide films, which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature. It also finds that aging for years significantly affected the nonstoichiometry of vanadium dioxide films, thus inducing much change in Raman modes.
文摘Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is formed especially after long periods of air exposure.Nickel surfaces are much less reactive to pure water than to air.The thermal stability of the surface oxides is related to oxidative temperature.The surface species of oxides formed by air exposure at temperatures below 120℃ can be reduced into nickel metal after heating the sample in vacuum at 300℃ for only 10 minutes (in the case of room temperature) to 1 h (in the case of 120℃). This reduction is caused by reaction with surface carbon contaminants.However,the surface species of nickel oxides formed by air exposure with heating at temperatures above 200℃ can not be reduced into metal after heating the sample in vacuum at 300℃ for 1h.
基金financially supported by the NSFC,China(No.22022504)the Guangdong“Pearl River”Talent Plan,China(No.2019QN01L353)+3 种基金the Higher Education Innovation Strong School Project of Guangdong Province of China,China(2020KTSCX122)the Guangdong Provincial Key Laboratory of Catalysis,China(No.2020B121201002)support from the Center for Computational Science and Engineering at SUSTechfinancial support by the National Key Research and Development Program of China,China(No.2017YFC0210905)。
文摘Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant Nos.11474207 and 11374217)
文摘According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C_2O, which show optical anisotropy. To study the optical properties of C_2O nanostructures, time-dependent density functional theory(TDDFT) is used. The C_2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C_2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.
文摘This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemical analysis ( ESC A ) , determination of surface hydroxy radical, Fourier-transfer infrared spectrophotometry (FT-IR ) , electron paramagnetic resonance (EPR), inductively coupled Plasma torch (ICP), etc. The emphasis is laid upon the exploration of HTO surface and a discussion about the adsorption micromechanism.
文摘hhen ammonium sulfate-iron oxide is treated below 573 K, ammonium sulfate can spontaneously desperse on the surface of iron oxide. Simultaneously ammonium sulfate decomposes to some extent. During or after the dispersion, sulfate ion can interact with Fe atom on the surface of iron oxide to form a sort of surface sulfato complex of Fe and thus is transformed from the isolated into the bidentately bound form. Above 573 K the sulfato complex of Fe will gradually decompose with a further increase in temperature.
基金Project supported by the Doctoral Research Fund of Southwest University of Science and Technology(Grant No.20zx7104)the Sichuan Science and Technology Program(Grant No.2020ZYD055)the National Natural Science Foundation of China(Grant Nos.11905206 and 12075194)。
文摘Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic.
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
文摘The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.
基金financial support provided by the National Natural Science Foundation of China(NSFC)(51974094,51874106,and U20A20269).
文摘Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.
基金This study was sponsored by the Open Fund Project Funded by State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University(Grant#2011DA105287-FW201903)We also want to thank the China Scholarship Council(CSC)for the financial support(Grant#201806430028).
文摘Coal-water interactions have profound influences on gas extraction from coal and coal utilization.Experimental measurements on three coals using X-ray photoelectron spectroscopy(XPS),low-temperature nitrogen adsorption and dynamic water vapor sorption(DVS)were conducted.A mechanism-based isotherm model was proposed to estimate the water vapor uptake at various relative humidities,which is well validated with the DVS data.The validated isotherm model of sorption was further used to derive the isosteric heat of water vapor sorption.The specific surface area of coal pores is not the determining parameter that controls water vapor sorption at least during the primary adsorption stage.Oxidation degree dominates the primary adsorption,and which togethering with the cumulative pore volume determine the secondary adsorption.Higher temperature has limited effects on primary adsorption process.The isosteric heat of water adsorption decreases as water vapor uptake increases,which is found to be close to the latent heat of bulk water condensation at higher relative humidity.The results confirmed that the primary adsorption is controlled by the stronger bonding energy while the interaction energy between water molecules during secondary adsorption stage is relatively weak.However,the thermodynamics of coal-water interactions are complicated since the internal bonding interactions within the coal are disrupted at the same time as new bonding interactions take place within water molecules.Coal has a shrinkage/swelling colloidal structure with moisture loss/gain and it may exhibit collapse behavior with some collapses irreversible as a function of relative humidity,which further plays a significant role in determining moisture retention.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
基金the support of the National Natural Science Foundation of China (No. 52174268)the Independent Exploration and Innovation Project of Graduate Students of Central South University (No. 2021zzts0885)。
文摘In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.