Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of...Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.展开更多
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ...Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.展开更多
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ...In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.展开更多
Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In...Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.展开更多
Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection prope...Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection property.A novel self-sealing pore MAO film was developed in this paper.The morphologies and chemical composition of the film were detected by scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDX).The corrosion behavior was investigated by electrochemical and salt spray tests.The possible film formation and corrosion mechanisms were proposed.The self-sealing pore film presents a blue appearance.Most of the micro-pores in the surface of the film are sealed during the film formation process.The chemical composition of the film mainly contains Mg,O,Ti,F and P.The self-sealing pore film exhibits better corrosion resistance compared with the traditional silicate film.Especially,the self-sealing pore film keeps intact after salt spray test for 2000 h,which can be attributed to its high compactness.展开更多
The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melt...The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.展开更多
A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring o...A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement is needed at low temperatures where the oxide film, previously formed at high temperature, spalls due to stresses induced by sliding. Experiments with Ti, W and Ta additions show a beneficial effect when added to Ni and Ni-base alloys. Low friction can be maintained down to 100℃ from 900℃. For unalloyed Ni friction and surface damage increases at 400℃ to 500℃. Two new alloys were perpared based on the beneficial results of binary alloys and ZrO2 diffusion in Ni.Low friction at temperature above 500℃ and reasonable values (0.32~0.42) at low temperature are obtained.展开更多
Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scann...Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.展开更多
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte...Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.展开更多
The stochastic cracking and healing behaviors of reaction-diffusion growth of thin filmswere studied by means of Markov processes analysis. We chose the thermal growth ofoxide scales on metals as an example of reactio...The stochastic cracking and healing behaviors of reaction-diffusion growth of thin filmswere studied by means of Markov processes analysis. We chose the thermal growth ofoxide scales on metals as an example of reaction-diffusion growth. The thermal growthof oxide films follows power law when no cracking occurs. Our results showed that thegrowth kinetics under stochastic cracking and healing conditions was different fromthat without cracking. It might be altered to either pseudo-linear or pseudo-power lawsdependent upon the intensity and frequency of the cracking of the films. When thehoping items dominated, the growth followed pseudo-linear law; when the diffusionalitems dominated, it followed pseudo-power law with the exponentials lower than theintrinsical values. The numerical results were in good agreement with the meassuredkinetics of isothermal and cyclic oxidation of NiAl-0.1 Y (at. %) alloys in air at 1273K.展开更多
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to...The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.展开更多
Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like str...Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.展开更多
The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image v...The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.展开更多
The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films...The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.展开更多
The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The result...The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The results indicate that high-temperature aging accelerates the dehydration of Sn(OH)_(4)in the pre-existing native oxide film to form SnO_(2)and facilitates the oxidation of fresh Sn substrate, resulting in the gradual increase in oxide film thickness and surface roughness with prolonging aging time. However, the corrosion resistance of the film initially is enhanced and then deteriorated with an extending aging time. Besides, the formation and evolution mechanisms of the oxide film with aging time were discussed.展开更多
Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this...Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.展开更多
Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of ...Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.展开更多
Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructura...Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.展开更多
A series of Eu-doped ZnO films were prepared by a sol-gel method. Precursor and films were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis spectra, as we...A series of Eu-doped ZnO films were prepared by a sol-gel method. Precursor and films were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis spectra, as well as the magnetism measurement. The wurtzite structure of obtained films presents an extreme high c-orientation character. The film susceptibility resembles a Curie-Weiss behavior at high temperature, and presents an obvious enhancement at low temperature, indicating the presence of antiferromagnetic interactions in the Zn0.9Eu0.1O films.展开更多
基金Project supported by University New Materials Disciplines Construction Program of Beijing Region
文摘Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.
基金Project(51371104)supported by the National Nature Science Foundation of China
文摘In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.
基金National Natural Science Foundation of China (50471004)
文摘Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.
基金financial support by the National Natural Science Foundation of China(No.51171198)National Key Basic Research Program of China(No.2013CB632205)the International Science&Technology Cooperation Program of China(2011DFA50904).
文摘Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection property.A novel self-sealing pore MAO film was developed in this paper.The morphologies and chemical composition of the film were detected by scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDX).The corrosion behavior was investigated by electrochemical and salt spray tests.The possible film formation and corrosion mechanisms were proposed.The self-sealing pore film presents a blue appearance.Most of the micro-pores in the surface of the film are sealed during the film formation process.The chemical composition of the film mainly contains Mg,O,Ti,F and P.The self-sealing pore film exhibits better corrosion resistance compared with the traditional silicate film.Especially,the self-sealing pore film keeps intact after salt spray test for 2000 h,which can be attributed to its high compactness.
文摘The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.
文摘A study was conducted to develop low-friction, wear-resistant surfaces on high temperature alloys for the temperature range from 26℃ to 900℃. The approach investigated consists of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement is needed at low temperatures where the oxide film, previously formed at high temperature, spalls due to stresses induced by sliding. Experiments with Ti, W and Ta additions show a beneficial effect when added to Ni and Ni-base alloys. Low friction can be maintained down to 100℃ from 900℃. For unalloyed Ni friction and surface damage increases at 400℃ to 500℃. Two new alloys were perpared based on the beneficial results of binary alloys and ZrO2 diffusion in Ni.Low friction at temperature above 500℃ and reasonable values (0.32~0.42) at low temperature are obtained.
文摘Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.
文摘Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.
基金supported by Hundred-Talent Project of Chinese Academy of Sciencesby the National Natural Science Foundation of China for Young Scientist
文摘The stochastic cracking and healing behaviors of reaction-diffusion growth of thin filmswere studied by means of Markov processes analysis. We chose the thermal growth ofoxide scales on metals as an example of reaction-diffusion growth. The thermal growthof oxide films follows power law when no cracking occurs. Our results showed that thegrowth kinetics under stochastic cracking and healing conditions was different fromthat without cracking. It might be altered to either pseudo-linear or pseudo-power lawsdependent upon the intensity and frequency of the cracking of the films. When thehoping items dominated, the growth followed pseudo-linear law; when the diffusionalitems dominated, it followed pseudo-power law with the exponentials lower than theintrinsical values. The numerical results were in good agreement with the meassuredkinetics of isothermal and cyclic oxidation of NiAl-0.1 Y (at. %) alloys in air at 1273K.
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
基金financially supported by the scientific research project of China Petroleum and Chemical Corporation(No.409075)
文摘The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.
基金Supported by the Research Fund of the International Science & Technology Cooperation Program of China(No.2011DFA52650) and Project 111(B13035)
文摘Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.
基金Project(51375110)supported by the National Natural Science Foundation of Chain
文摘The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.
基金Funded by the National Natural Science Foundation of China(No. 51171011)
文摘The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.
基金financial support from CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences。
文摘The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The results indicate that high-temperature aging accelerates the dehydration of Sn(OH)_(4)in the pre-existing native oxide film to form SnO_(2)and facilitates the oxidation of fresh Sn substrate, resulting in the gradual increase in oxide film thickness and surface roughness with prolonging aging time. However, the corrosion resistance of the film initially is enhanced and then deteriorated with an extending aging time. Besides, the formation and evolution mechanisms of the oxide film with aging time were discussed.
文摘Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.
文摘Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.
基金supported by the National Natural Science Foundation of China (No.51165038)the Doctoral Startup Fund of Nanchang Hangkong University (No.EA201103238)the Korean Ministry of Commerce, Industry and Energy through the project entitled as "The Development of Structural Metallic Materials and Parts with Super Strength and High Performance"
文摘Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.
基金Project supported by the National Natural Science Foundation of China (20331030, 20373004) the Program for New Century Excellent Talents in University (NCET-04-0164) Engineering Research Institute, Peking University ( ERIPKU-204030)
文摘A series of Eu-doped ZnO films were prepared by a sol-gel method. Precursor and films were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis spectra, as well as the magnetism measurement. The wurtzite structure of obtained films presents an extreme high c-orientation character. The film susceptibility resembles a Curie-Weiss behavior at high temperature, and presents an obvious enhancement at low temperature, indicating the presence of antiferromagnetic interactions in the Zn0.9Eu0.1O films.