期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
NiO-Doped Fe_(2)O_(3)/MgO Properties for the Chemical Looping Oxidative Dehydrogenation of Ethane
1
作者 Liang Hao Chen Junjie +1 位作者 Sun Jie Sun Hui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期27-33,共7页
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni... Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h). 展开更多
关键词 chemical looping oxidative dehydrogenation oxygen carrier Fe_(2)O_(3)/MgO NIO
下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
2
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
A mini review on oxidative dehydrogenation of propane over boron nitride catalysts
3
作者 Zhu Fu De-Zheng Li +5 位作者 Li-Dai Zhou Yu-Ming Li Jia-Wen Guo Yu-Qiao Li Hui-Min Liu Qi-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2488-2498,共11页
Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards... Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field. 展开更多
关键词 Oxidative dehydrogenation of propane Boron nitride PROPYLENE Reaction mechanism
下载PDF
Effect of boron species on carbon surface on oxidative dehydrogenation of propane
4
作者 Tingcong Wang Mingyuan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期310-317,共8页
Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials ... Carbon catalysts for propane oxidative dehydrogenation(PODH)can potentially replace metal oxide catalysts due to their environmental friendliness(greenness)and excellent catalytic performance.Biomass carbon materials have the advantages of being abundant in variety,inexpensive,and easily available,but their catalytic selectivity is relatively poor in PODH.Therefore,we report here on a boron-doped sisal fiber carbon catalyst,which showed excellent selectivity of propylene in PODH,excluding the effect of surface-covered B2O3 on the catalytic performance by hot water washing.The carbon material exhibited the best catalytic performance with a load of 2%(mass)and a calcination temperature of 1100℃.At a reaction temperature of 400℃,the conversion rate of propane was 2.0%,and the selectivity toward propylene reached 88.6%.The new chemical bonds formed by boron on the surface of the carbon materials had an important effect on the catalytic performance,as determined by XPS characterization.The BAO groups affected the catalytic activity by inhibiting the generation of electrophilic oxygen species,while the BAC content improved the selectivity toward propylene by changing the electron cloud density. 展开更多
关键词 BORON-DOPED Oxidative dehydrogenation PROPANE SELECTIVITY
下载PDF
Plasma treated M1 MoVNbTeO_(x)-CeO_(2) composite catalyst for improved performance of oxidative dehydrogenation of ethane
5
作者 Shuairen Qian Yuxin Chen +1 位作者 Binhang Yan Yi Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期904-914,共11页
High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was... High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium. 展开更多
关键词 Oxidative dehydrogenation of ethane(ODHE) MoVNbTeO_(x) Composite catalyst Oxygen plasma Energy conversion
下载PDF
Unravelling the role of boron dopant in borocarbonitirde catalytic dehydrogenation reaction
6
作者 Xuefei Zhang Yanbing Lu +2 位作者 Yingyi Han Runping Feng Zailai Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期137-143,I0006,共8页
Borocarbonitride(BCN) materials are newly developed metal-free catalytic materials exhibiting high selectivity in oxidative dehydrogenation(ODH) of alkanes. However, the in-depth understandings on the role of boron(B)... Borocarbonitride(BCN) materials are newly developed metal-free catalytic materials exhibiting high selectivity in oxidative dehydrogenation(ODH) of alkanes. However, the in-depth understandings on the role of boron(B) dopants and the intrinsic activities of –C=O and –B–OH still remain unknown.Herein, we report a series of BCN materials with regulable B content and surface oxygen functional groups via self-assembly and pyrolysis of guanine and boric acid. We found that the B/C ratio is the key parameter to determine the activity of ODH and product distribution. Among them, the high ethylbenzene conversion(~57%) and styrene selectivity(~83%) are achieved in ODH for B_(1)CN. The styrene selectivity can be improved by increasing of B/C ratio and this value reaches near 100% for B_5CN.Structural characterizations and kinetic measurements indicate that –C=O and –B–OH dual sites on BCN are real active sites of ODH reaction. The intrinsic activity of –C=O(5.556 × 10^(-4)s^(-1)) is found to be 23.7 times higher than –B–OH(0.234 × 10^(-4)s^(-1)) site. More importantly, we reveal that the deep oxidation to undesirable CO_(2) occurs on –C=O rather than –B–OH site, and B dopant in BCN materials can reduce the nucleophilicity of –C=O site to eliminate the CO_(2) emission. Overall, the present work provides a new insight on the structure–function relationship of the BCN catalytic systems. 展开更多
关键词 Borocarbonitride Oxidative dehydrogenation Intrinsic activity CO_(2)selectivity
下载PDF
Electrifying Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) for focalized heating in oxygen transport membranes
7
作者 Marwan Laqdiem Julio García-Fayos +6 位作者 Laura Almar Alfonso J.Carrillo Álvaro Represa JoséM.López Nieto Sonia Escolástico David Catalán-Martinez Jose M.Serra 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期99-110,共12页
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production... Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned. 展开更多
关键词 Oxygen permeation Oxidative dehydrogenation of ethane Oxygen transport membranes Joule effect Mixed ionic-electronic conductors Catalytic membrane reactors
下载PDF
Synthesis of a new ordered mesoporous NiMoO_4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane 被引量:7
8
作者 Xiaoqiang Fan Jianmei Li +4 位作者 Zhen Zhao Yuechang Wei Jian Liu Aijun Duan Guiyuan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期171-178,共8页
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-... Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4. 展开更多
关键词 ----w 7ordered mesoporous structure NiMoO4 complex oxide vacuum nanocasting PROPANE oxidative dehydrogenation
下载PDF
A high propylene productivity over B2O3/SiO2@honeycomb cordierite catalyst for oxidative dehydrogenation of propane 被引量:4
9
作者 Yuxi Zhou YangWang +2 位作者 Wenduo Lu Bing Yan Anhui Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2778-2784,共7页
Boron-based metal-free catalysts for oxidative dehydrogenation of propane(ODHP)have drawn great attention in both academia and industry due to their impressive activity and olefin selectivity.Herein,the SiO2 and B2O3 ... Boron-based metal-free catalysts for oxidative dehydrogenation of propane(ODHP)have drawn great attention in both academia and industry due to their impressive activity and olefin selectivity.Herein,the SiO2 and B2O3 sequentially coated honeycomb cordierite catalyst is designed by a two-step wash-coat method with different B2O3 loadings(0.1%–10%)and calcination temperatures(600,700,800℃).SiO2 obtained by TEOS hydrolysis acts as a media layer to bridge the cordierite substrate and boron oxide via abundant Si\\OH groups.The welldeveloped straight channels of honeycomb cordierite make it possible to carry out the reactor under high gas hourly space velocity(GHSV)and the thin wash-coated B2O3 layer can effectively facilitate the pore diffusion on the catalyst.The prepared B2O3/SiO2@HC monolithic catalyst exhibits good catalytic performance at low boron oxide loading and achieves excellent propylene selectivity(86.0%),olefin selectivity(97.6%,propylene and ethylene)and negligible CO2(0.1%)at 16.9%propane conversion under high GHSV of 345,600 ml·(g B2O3)^-1·h^-1,leading to a high propylene space time yield of 15.7 g C3H6·(g B2O3)^-1·h^-1 by suppressing the overoxidation.The obtained results strongly indicate that the boron-based monolithic catalyst can be properly fabricated to warrant the high activity and high throughput with its high gas/surface ratio and straight channels. 展开更多
关键词 Oxidative dehydrogenation Boron-based catalyst ALKANE PROPYLENE MONOLITH High GHSV
下载PDF
Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts 被引量:5
10
作者 Lin Wang Wei Chu +3 位作者 Chengfa Jiang Yuefeng Liu Jie Wen Zaiku Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期43-48,共6页
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed red... In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desolption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600 ~C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOz-NiO interface as identified by XPS. 展开更多
关键词 nickel oxide molybdenum oxide mole ratio oxidative dehydrogenation of propane PROPENE
下载PDF
Kinetics of the Oxidative Dehydrogenation of Propane over a VMgO Catalyst 被引量:3
11
作者 L.Late E.A.Blekkan 《Journal of Natural Gas Chemistry》 CAS CSCD 2002年第1期33-42,共10页
The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation... The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550°C over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at 10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by-products were CO and CO2. The reaction rate of propane was found to be first order in propane and close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbon as the rate determining step. The activation energy of the conversion of propane was found to be 122±6 kJ/mol. 展开更多
关键词 PROPANE oxidative dehydrogenation VMgO KINETICS
下载PDF
Intrinsic kinetics of oxidative dehydrogenation of propane in the presence of CO_2 over Cr/MSU-1 catalyst 被引量:2
12
作者 Haitao Liu Zhao Zhang Huiquan Li Qingze Huang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期311-317,共7页
The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinet... The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data. 展开更多
关键词 intrinsic kinetics PROPANE carbon dioxide oxidative dehydrogenation Cr/MSU-1 catalyst
下载PDF
Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane 被引量:1
13
作者 Yajie Zhang Rui Huang +5 位作者 Zhenbao Feng Hongyang Liu Chunfeng Shi Junfeng Rong Baoning Zong Dangsheng Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期349-353,共5页
Catalytic performance of phosphate-modified carbon nanotube(PoCNT) catalysts for oxidative dehydrogenation(ODH) of n-butane has been systematically investigated. The Po CNT catalysts are characterized by SEM, TEM,... Catalytic performance of phosphate-modified carbon nanotube(PoCNT) catalysts for oxidative dehydrogenation(ODH) of n-butane has been systematically investigated. The Po CNT catalysts are characterized by SEM, TEM, XPS and TG techniques. We set the products selectivity as a function of butane conversion over various phosphate loading, and it is found that the PoCNT catalyst with the 0.8% phosphate weight loading(0.8PoCNT) exhibits the best catalytic performance. When the phosphate loading is higher than 0.8 wt%, the difference of catalytic activity among the PoCNT catalysts is neglectable. Consequently, the ODH of n-butane over the 0.8PoCNT catalyst is particularly discussed via changing the reaction conditions including reaction temperatures, residence time and n-butane/O;ratios. The interacting mechanism of phosphate with the oxygen functional groups on the CNT surface is also proposed. 展开更多
关键词 Carbon nanotube Phosphate modification Oxidative dehydrogenation N-BUTANE Metal free
下载PDF
Effect of gallium, aluminium, and chromium on silica supported V-Mg-O catalysts during oxidative dehydrogenation of propane: Kinetic study 被引量:1
14
作者 B.Ravi Kumar Rajeev Kumar 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期256-263,共8页
The oxidative dehydrogenation (ODH) of propane was conducted on gallium, aluminum, and chromium doped Si30VMgO catalysts. On doping, the concentrations of the phases responsible for the activity and selectivity incr... The oxidative dehydrogenation (ODH) of propane was conducted on gallium, aluminum, and chromium doped Si30VMgO catalysts. On doping, the concentrations of the phases responsible for the activity and selectivity increased in their concentrations. The reaction studies were conducted in a tubular steel reactor at temperatures of 753, 783, 813, and 843 K and atmospheric pressure. The total flow rates of the feed were chosen as 30, 40, 50, and 60 ml/min. The propane to oxygen ratios were chosen at 1 : 1, 2 : 1, and 3 : 1, respectively. The effect of various dopants on the activity and selectivity of the catalysts was studied. Deactivation studies were conducted over all the catalysts. The kinetic data were analyzed in terms of power law models and Langmuir-Hinshelwood (LH) models. The kinetic data results were analyzed by comparing the effect of dopants. Statistical model discrimination was done for the proposed models. AIC and BIC criteria were used for discrimination of the models. 展开更多
关键词 oxidative dehydrogenation PROPANE GALLIUM ALUMINUM CHROMIUM KINETIC
下载PDF
The Active Sites of the Reference Phase of SmVO_4 as Catalyst for Propane Oxidative Dehydrogenation 被引量:1
15
作者 ZHANG Wei-de AU Chak-tong +1 位作者 LI Ji-tao WAN Hui-lin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1998年第3期72-74,共3页
IntroductionTheutilizationofalkanetoproduceintermediatechemicalsisalwaysatractive.Thefunctionalizationofligh... IntroductionTheutilizationofalkanetoproduceintermediatechemicalsisalwaysatractive.Thefunctionalizationoflightparafinbycatalyt... 展开更多
关键词 Samarium orthovanadate Active site V 4+ species Oxidative dehydrogenation
下载PDF
Kinetics of the Oxidative Dehydrogenation of Isobutane over Cr_2O_3/La_2(CO_3)_3 被引量:1
16
作者 Yanping Sun Tracey A.Robson Trevor C.Brown 《Journal of Natural Gas Chemistry》 CAS CSCD 2002年第1期70-78,共9页
The oxidative dehydrogenation (ODH) of isobutane over Cr_2O_3/La_2(CO_3)_3 has been investigated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurat... The oxidative dehydrogenation (ODH) of isobutane over Cr_2O_3/La_2(CO_3)_3 has been investigated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurately determined. By heating the catalyst at a constant rate from 150-300℃, temperature fluctuations due to non-equilibrium adsorption are minimized. The evolved gas profiles show that ODH to isobutene and water is a primary reaction pathway, while carbon dioxide, which forms from the catalyst during reaction, is the only other product. This CO2 evolution may enhance the activity of the catalyst. Isobutene formation proceeds with the participation of lattice oxygen from the Cr2O3/La2(CO3)3 catalyst. The intrinsic Arrhenius rate constant for the ODH of isobutane isk(s-1) = 1011.5±2.2exp{-((55±5) -ΔHads kJmol-1)/RT}The small pre-exponential factor is expected for a concerted mechanism and for such a catalyst with a small surface area and limited porosity. 展开更多
关键词 catalytic kinetics oxidative dehydrogenation molecular flow ISOBUTANE isobutene Cr_2O_3/La_2(CO_3)_3
下载PDF
Balancing the Activity and Selectivity of Propane Oxidative Dehydrogenation on NiOOH(001)and(010) 被引量:1
17
作者 Lisheng Li Hua Wang +2 位作者 Jinyu Han Xinli Zhu Qingfeng Ge 《Transactions of Tianjin University》 EI CAS 2020年第5期341-351,共11页
Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation comp... Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation compared with that for further oxidation.In this work,calculations based on density functional theory were performed to map out the reaction pathways of propane ODH on the surfaces(001)and(010)of nickel oxide hydroxide(NiOOH).Results show that propane is physisorbed on both surfaces and produces propylene through a two-step radical dehydrogenation process.The relatively low activation barriers of propane dehydrogenation on the NiOOH surfaces make the NiOOH-based catalysts promising for propane ODH.By contrast,the weak interaction between the allylic radical and the surface leads to a high activation barrier for further propylene oxidation.These results suggest that the catalysts based on NiOOH can be active and selective for the ODH of propane toward propylene. 展开更多
关键词 Density functional theory Oxidative dehydrogenation PROPANE Nickel oxide hydroxide Two-step radical mechanism SELECTIVITY
下载PDF
Oxidative dehydrogenation of ethane to ethene over a superbase supported LiCl system
18
作者 Yu Bao Zhao Wen Wen Tan +2 位作者 Hui Li Xiao Hui Jia Hui Lin Wan 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第11期1366-1369,共4页
LiCl-promoted superbase catalysts were found to be stable and highly selective to ethene for oxidative dehydrogenation of ethane,giving 84%ethane conversion and 74%ethene yield at 923 K.Results indicated that the stro... LiCl-promoted superbase catalysts were found to be stable and highly selective to ethene for oxidative dehydrogenation of ethane,giving 84%ethane conversion and 74%ethene yield at 923 K.Results indicated that the stronger the basicity of LiC1-based catalysts,the better the catalytic performance. 展开更多
关键词 Oxidative dehydrogenation ODH ETHANE ETHENE SUPERBASE LICL
下载PDF
Numerical investigation of complex chemistry performing in Ptcatalyzed oxidative dehydrogenation of ethane fixed-bed reactors
19
作者 Zhongfeng Geng Hao Deng +1 位作者 Yonghui Li Minhua Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期793-807,共15页
Ethylene is one of the most important basic chemicals in the modern chemical industry.Thermal or catalytic cracking of hydrocarbons is the main industrial technologies nowadays,which suffer from equilibriumlimitation ... Ethylene is one of the most important basic chemicals in the modern chemical industry.Thermal or catalytic cracking of hydrocarbons is the main industrial technologies nowadays,which suffer from equilibriumlimitation and rapid coke formation.The oxidative dehydrogenation of ethane(ODHE)is considered to be a promising alternative process since it overcomes equilibrium-limitations,avoids catalyst deactivation by coke formation,and decreases the number of side reactions.In this study,particle-resolved 2 D CFD simulations of fixed-beds filled with eggshell catalysts coupled with micro-kinetics of Pt-catalyzed ODHE were performed to understand the effect of operation conditions and catalyst properties on ethylene selectivity.The catalyst bed was created by discrete element method(DEM)and the central longitudinal section of the reactor tube was defined as the 2 D simulation region.Both of the homogeneous and catalytic heterogeneous chemical reactions were described by detailed micro-kinetics within the particle-resolved CFD simulation.At first,the established model of monolith reactors was verified by comparing the simulated results with experimental results reported in literature.Then,the effects of operation conditions and catalyst concentration on the ethylene selectivity in randomly packed beds were explored.The specific variation of certain operation conditions including inlet flow rate,inlet temperature,pressure,inlet C2 H6/O2 ratio and N2 dilution ratio can effectively increase ethylene selectivity.And the reduction of ratio of catalytic active area to geometric area Fcat/georepresenting catalyst properties from 140 to 30 increases the selectivity from 42.2%to 59.3%.This research can provide reference for the industrialization of ODHE process in the future. 展开更多
关键词 ETHANE ETHYLENE Oxidative dehydrogenation SELECTIVITY CFD FIXED-BED
下载PDF
Investigation on High Efficient Catalysts for the Oxidative Dehydrogenation of Ethane
20
作者 K.R.Tsai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1993年第3期269-272,共4页
Since the pioneer work of Thorsteinson fot me ox(?) ethane, a series of V-Mo based catalysts mainly for the oxidative dehydrogenation of ethane have been patented. On the surfaces of these catalysts, a C;H;selectivi... Since the pioneer work of Thorsteinson fot me ox(?) ethane, a series of V-Mo based catalysts mainly for the oxidative dehydrogenation of ethane have been patented. On the surfaces of these catalysts, a C;H;selectivity of 70% was achieved, but the space velocity was only about 340 h;. Lunsford, et al. reported a C;H;conversion of 75% and a C;H;selectivity of 76% over the 展开更多
关键词 Oxidative dehydrogenation of ethane Oxygen species XPS RAMAN TPD
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部