期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Propene and CO oxidation on Pt/Ce-Zr-SO_4^(2-) diesel oxidation catalysts:Effect of sulfate on activity and stability 被引量:9
1
作者 顾蕾 陈晓 +3 位作者 周瑛 朱秋莲 黄海凤 卢晗锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期607-616,共10页
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv... Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance. 展开更多
关键词 diesel oxidation catalyst Pt/Ce-Zr-SO_4^(2-) catalyst Sulfur resistance Catalytic oxidation
下载PDF
铂基催化剂用于柴油烃氧化(英文)
2
作者 Masaaki HANEDA Motoi SASAKI +1 位作者 Hideaki HAMADA Masakuni OZAWA 《催化学报》 SCIE CAS CSCD 北大核心 2011年第5期777-781,共5页
The catalytic performance of Pt-based catalysts for the total oxidation of hydrocarbons was investigated.The activity of supported Pt catalysts(Pt/Al2O3,Pt/ZrO2,Pt/TiO2,and Pt/H-ZSM-5)depends on the metal oxide suppor... The catalytic performance of Pt-based catalysts for the total oxidation of hydrocarbons was investigated.The activity of supported Pt catalysts(Pt/Al2O3,Pt/ZrO2,Pt/TiO2,and Pt/H-ZSM-5)depends on the metal oxide support.Pt/Al2O3 showed the highest catalytic activity when the catalysts were aged at 750°C for 50 h in air.The activity of Pt/Al2O3 was dependent on the valence state of the Pt surface.Pt/Al2O3 with the Pt surface in the metallic state was more active than with the surface in the cationic state.The surface density of acid and basic sites on the Al2O3 support controlled the valence state of the Pt surface and stability of the Pt particles in the highly dispersed state,respectively. 展开更多
关键词 diesel oxidation catalyst PLATINUM ALUMINA valence state of platinum surface surface acid-base property
下载PDF
Preparation of Ordered Mesoporous Nanocrystalline Ceria and Ceria-zirconia for Soot Oxidation
3
作者 杨鹏 ZHOU Shiyu 雷家珩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期113-117,共5页
Ordered mesoporous ceria and ceria-zirconia with high specific surface area were prepared by nanocasting of a mesoporous silica KIT-6 template and used for soot oxidation.The as-synthesized ordered mesoporous ceria an... Ordered mesoporous ceria and ceria-zirconia with high specific surface area were prepared by nanocasting of a mesoporous silica KIT-6 template and used for soot oxidation.The as-synthesized ordered mesoporous ceria and ceria-zirconia were characterized by XRD,TEM,Nitrogen adsorption-desorption,Raman spectroscopy,and XRF.The results indicate that mesoporous ceria and ceria-zirconia possess highly ordered mesoporous structure,and exhibited excellent catalytic performance in soot oxidation.T_(50) of mesoporous ceria and ceria-zirconia are 475 and 470 ℃,respectively.The high catalytic activity of mesoporous materials can be attributed to the mesoporous structure and small crystallite size.Moreover,aged mesoporous materials exhibit high catalytic activity. 展开更多
关键词 mesoporous ceria mesoporous ceria-zirconia soot oxidation diesel pollution control
下载PDF
Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines 被引量:10
4
作者 Tao Tang Jun Zhang +2 位作者 Dongxiao Cao Shijin Shuai Yanguang Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第12期2434-2439,共6页
This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst(DOC) and a catalyzed diesel particulate filter(C... This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst(DOC) and a catalyzed diesel particulate filter(CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number(SPN) was close to100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. 展开更多
关键词 Catalyzed diesel particulate filter diesel oxidation catalyst FILTRATION REGENERATION Balance point temperature
原文传递
Promoting effect of vanadium on catalytic activity of Pt/Ce–Zr–O diesel oxidation catalysts 被引量:5
5
作者 Haifeng Huang Bo Jiang +2 位作者 Lei Gu Zhonghua Qi Hanfeng Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第7期135-142,共8页
A series of Pt-V/Ce-Zr-O diesel oxidation catalysts was prepared using the impregnation method. The catalytic activity and sulfur resistance of Pt-V/Ce-Zr-O were investigated in the presence of simulated diesel exhaus... A series of Pt-V/Ce-Zr-O diesel oxidation catalysts was prepared using the impregnation method. The catalytic activity and sulfur resistance of Pt-V/Ce-Zr-O were investigated in the presence of simulated diesel exhaust. The effect of vanadium on the structure and redox properties of the catalysts was also investigated using the Brunauer-Emmett-Teller method,X-ray diffraction, H2temperature-programmed reduction, CO temperature-programmed desorption, X-ray photoelectron spectroscopy, and Energy Dispersive Spectroscopy. Results showed that the Pt particles were well dispersed on the Ce-Zr-O carrier through the vanadium isolation effect, which significantly improved the oxidation activity toward CO and hydrocarbons. An electron-withdrawing phenomenon occurred from V to Pt, resulting in an increase in the metallic nature of platinum, which was beneficial to hydrocarbon molecular activation. 展开更多
关键词 diesel oxidation converter (DOC) Pt-V/Ce-Zr-O VANADIUM Catalytic performance Sulfur resistance
原文传递
An assessment of how distance and diesel oxidation catalyst will impact thermal decomposition behaviors of particles 被引量:2
6
作者 Mengzhu Zhang Yunshan Ge +1 位作者 Chuanzhen Zhang Xin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期157-169,共13页
Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier tran... Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier transformation infrared spectrometrymass spectrum.Diesel particles were collected at the same location with and without diesel oxidation catalyst(DOC)mounted on the test engine separately.The three poles in thermal gravity-differential thermal gravity images suggested that the decomposition process of diesel particles could be divided into three stages which correspond to the decompositions of lower boiling substances,higher boiling substances and soot respectively.It is noticed that no matter whether DOC was mounted or not,the further the particles were sampled away from the engine block,the lower the peak temperatures and the heavier the mass losses within the first two stages,which indicated that the soluble organic fraction in the particle samples increased and therefore lowering the activation energy of thermal decomposition.Hydroxyl,ammonia,C_xH_y fragments,benzene,toluene,and phenol were found to be the primary products of particle decomposition,which didn’t change with the location of particle sample point.The employment of DOC increased the activation energy for particle oxidation and resulted in a higher peak temperature and lower mass loss within the first-stage.Moreover,the C=O stretching bands of aldehyde and ketone at 1771 cm-1 was only detected without a DOC,while the N02 peak at 1634 cm-1 was solely noticed with the presence of DOC.Compared to the first-stage pyrolysis products,more polycyclic aromatic hydrocarbons and less C_xH_y fragments were seen in the second-stage. 展开更多
关键词 Transport distance diesel oxidation catalyst Thermal decomposition Pyrolysis products PARTICLE
原文传递
Preparation of M/Ce_(1-x)Ti_(x)O_(2)(M=Pt,Rh,Ru)from sol-gel method and their catalytic oxidation activity for diesel Soot 被引量:2
7
作者 Bing Zhao Wenlin Chen +2 位作者 Yifeng Tan Fan Li Mengkui Tian 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1849-1859,I0002,共12页
A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio... A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio of Ti/(Ti+Ce)and ranges from 0.1 to 0.5)exhibit much better oxidation performance than CeO_(2)catalyst,and the Ce_(0.9)Ti_(0.1)O_(2)catalyst calcined at 500℃has the best catalysis activity.Each noble metal(1 wt%)was supported on Ce_(0.9)Ti_(0.1)O_(2)(M/C9 T1)and the properties of the catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Raman,Brunauer-Emmett-Teller(BET)method,and H_(2)-temperature programmed reduction(H_(2)-TPR)results.Results show that the introduction of Ti into CeO_(2)forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface.The noble metal is highly dispersed over Ce_(0.9)Ti_(0.1)O_(2),and M/C9 T1 catalysts present enhanced activity in comparison to Ce_(0.9)Ti_(0.1)O_(2).It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst.A small amount of Ti doping in CeO_(2)can significantly improve the activity of the catalyst,while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst,which hinders the contact and reaction between the catalyst and the soot. 展开更多
关键词 diesel oxidation catalyst Soot oxidation Ce-Ti oxides Rare earths
原文传递
A review of fundamental factors affecting diesel PM oxidation behaviors 被引量:8
8
作者 GAO JianBing MA ChaoChen +2 位作者 XING ShiKai SUN LiWei HUANG LiYong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第3期330-345,共16页
Diesel particulate matter(DPF) is usually employed to meet the stringent regulations on particulate matter(PM) emissions for diesel engine. To resolve the DPF regeneration problem, comprehensive information about the ... Diesel particulate matter(DPF) is usually employed to meet the stringent regulations on particulate matter(PM) emissions for diesel engine. To resolve the DPF regeneration problem, comprehensive information about the factors influencing PM oxidation behaviors must be understood. Large amounts of factors related to PM oxidation activity have been investigated, however, some relations are still ambiguous. This paper reviews the factors related to PM oxidation activity that the factors are divided into the engine-correlated and engine-uncorrelated factors. The methods with both advantages and disadvantages to test the oxidation behaviors are introduced. The microstructure and ingredient being fundamental factors affecting PM oxidation behaviors are as the principle line to correlate PM oxidation behaviors and engine-correlated factors. The relations of engine-correlated factors with oxidation behaviors are obtained though advanced technologies that are mutual complementation. The engine-uncorrelated factors are also reviewed that these factors are vital to oxidation activity changes. Multiple-factor analysis rather than single-factor analysis should be developed to make the oxidation behaviors of diesel PM more clear. 展开更多
关键词 diesel PM oxidation behaviors microstructure ingredient
原文传递
On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities 被引量:7
9
作者 Gang Wang Shuiyuan Cheng +2 位作者 Jianlei Lang Song Li Liang Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期28-37,共10页
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hy... A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene. 展开更多
关键词 Light-duty diesel vehicles Emission factor Hydrocarbon Nitrogen oxide Volatile organic compounds Ozone formation potential
原文传递
Effects of a diesel oxidation catalyst on gaseous pollutants and fine particles from an engine operating on diesel and biodiesel
10
作者 Xiaoyan SHI Kebin HE +2 位作者 Weiwei SONG Xingtong WANG Jihua TAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第4期463-469,共7页
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very eff... The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%-95% reduction in CO and 36%-70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%-32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%-97% decrease in OC and 3%-65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PMz.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20. 展开更多
关键词 diesel oxidation catalyst (DOC) diesel particulate matters elemental carbon (EC) organic carbon (OC) BIOdiesel
原文传递
Improved sulfur-resistant ability on CO oxidation of Pd/Ce_(0.75)Zr_(0.25)O_2 over Pd/CeO_2-TiO_2 and Pd/CeO_2 被引量:2
11
作者 沈美庆 林放 +2 位作者 魏光曦 王建强 朱少春 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第1期56-61,共6页
The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(... The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment. 展开更多
关键词 Pd/Ce0.75Zr0.25O2 Pd/CeO2-TiO2 diesel oxidation catalyst SO2 poison XPS rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部