This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw...This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw material adaptability,and enhancing comprehensive recovery efficiency.This article introduces different lead zinc metallurgical processes and their oxygen consumption characteristics,including oxygen enriched side blowing lead smelting,oxygen bottom blowing lead smelting,oxygen enriched top blowing lead smelting,flash smelting lead,oxygen pressure leaching zinc smelting,and atmospheric pressure oxygen leaching zinc smelting.It is pointed out that oxygen enhanced metallurgy is the direction for the transformation and upgrading of lead zinc metallurgy.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hyd...The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag_9Pd_1 alloy nanoactiniae with obviously enhanced electro-catalytic activity(2.23 mA cm^(-2) at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag_9Pd_1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag_9Pd_1 combination, as displayed by an assembly of X-ray diffraction(XRD) spectrum,energy dispersive X-ray(EDX) analysis, and cyclic voltammetry(CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals.展开更多
文摘This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw material adaptability,and enhancing comprehensive recovery efficiency.This article introduces different lead zinc metallurgical processes and their oxygen consumption characteristics,including oxygen enriched side blowing lead smelting,oxygen bottom blowing lead smelting,oxygen enriched top blowing lead smelting,flash smelting lead,oxygen pressure leaching zinc smelting,and atmospheric pressure oxygen leaching zinc smelting.It is pointed out that oxygen enhanced metallurgy is the direction for the transformation and upgrading of lead zinc metallurgy.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。
基金sponsored by the National Natural Science Foundation of China (21576139, 21503111)the Natural Science Foundation of Jiangsu Province (BK20171473)+1 种基金the National and Local Joint Engineering Research Center of Biomedical Functional Materials, Natural Science Foundation of Jiangsu Higher Education Institutions of China (16KJB150020)a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag_9Pd_1 alloy nanoactiniae with obviously enhanced electro-catalytic activity(2.23 mA cm^(-2) at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag_9Pd_1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag_9Pd_1 combination, as displayed by an assembly of X-ray diffraction(XRD) spectrum,energy dispersive X-ray(EDX) analysis, and cyclic voltammetry(CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals.