期刊文献+
共找到3,718篇文章
< 1 2 186 >
每页显示 20 50 100
“Buckets effect”in the kinetics of electrocatalytic reactions 被引量:2
1
作者 Haowen Cui Yan-Xia Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期388-396,I0010,共10页
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo... In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships. 展开更多
关键词 oxygen reduction reaction KINETICS Zero order Rectangular hyperbolic relationship pH effect
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
2
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY reaction barrier
下载PDF
Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction 被引量:1
3
作者 Saihang Zhang Senchuan Huang +8 位作者 Fengzhan Sun Yinghui Li Li Ren Hao Xu Zhao Li Yifei Liu Wei Li Lina Chong Jianxin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期194-201,I0005,共9页
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te... High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts. 展开更多
关键词 oxygen evolution reaction Nickel-iron bi-metal alkoxide Lattice oxygen-mediated reaction mechanism Alkaline electrolysis ELECTROCATALYSTS
下载PDF
Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction 被引量:1
4
作者 Zhichao Jia Yang Yuan +6 位作者 Yanxing Zhang Xiang Lyu Chenhong Liu Xiaoli Yang Zhengyu Bai Haijiang Wang Lin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期236-244,共9页
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben... Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts. 展开更多
关键词 ELECTROCATALYST in situ Raman Mo-doped CoOOH oxygen evolution reaction
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:10
5
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY oxygen evolution reaction Hydrogen evolution reaction Theoretical simulations
下载PDF
The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction
6
作者 Jing Li Tingyu Lu +6 位作者 Yu Fang Guangyao Zhou Mingyi Zhang Huan Pang Jun Yang Yawen Tang Lin Xu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期338-349,共12页
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su... Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields. 展开更多
关键词 Co-based ELECTROCATALYSTS oxygen reduction reaction rectifying CONTACT Zn-air BATTERIES
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:4
7
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 oxygen reduction reaction CATALYSTS In-situ techniques Active sites MECHANISMS
下载PDF
Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions 被引量:3
8
作者 Sijia Liu Minghao Liu +4 位作者 Xuewen Li Shuai Yang Qiyang Miao Qing Xu Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第5期127-137,共11页
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th... Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts. 展开更多
关键词 covalent organic frameworks metal organic polymers oxygen evolution reaction oxygen reduction reaction single atom catalysts
下载PDF
Pyrolysis of Copper Phthalocyanine as Non-noble Metal Electrocatalysts for Oxygen Reduction Reaction
9
作者 ZHANG Lijuan LU Jinhua +1 位作者 WANG Yan LI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1087-1092,共6页
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP... We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells. 展开更多
关键词 copper phthalocyanine PYROLYSIS ELECTROCATALYTIC oxygen reduction reaction
下载PDF
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
10
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 oxygen reduction reaction N-doped carbon reaction path Structural evolution Oxidation in reduction
下载PDF
Surface-neutralization engineered NiCo-LDH/phosphate hetero-sheets toward robust oxygen evolution reaction
11
作者 Shunfa Zhou Yuxuan Liu +4 位作者 Jing Li Zhao Liu Jiawei Shi Liyuan Fan Weiwei Cai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1151-1158,共8页
Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts hav... Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers. 展开更多
关键词 oxygen evolution reaction PHOSPHATE Layered double hydroxide Hetero-sheets Stability
下载PDF
Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries
12
作者 Jie Zhu Junxue Chen +7 位作者 Xida Li Kun Luo Zewei Xiong Zhiyu Zhou Wenyun Zhu Zhihong Luo Jingbin Huang Yibing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期383-393,共11页
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr... Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts. 展开更多
关键词 ELECTROCATALYST oxygen evolution reaction Surface reconstruction Selective etching Amorphous-crystalline heterostructures
下载PDF
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC
13
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
下载PDF
Rational design of MXene-based vacancy-confined single-atom catalyst for efficient oxygen evolution reaction
14
作者 Zhongheng Fu Guangtong Hai +3 位作者 Xia-Xia Ma Dominik Legut Yongchao Zheng Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期663-669,共7页
Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene... Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene-based SACs depends on an experimental trial-and-error approach.A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs.Herein,highthroughput screening was performed through first-principles calculations and machine learning techniques.Ti_(3)C_(2)(OH)_(x),V_(3)C_(2)(OH)_(x),Zr_(3)C_(2)(OH)_(x),Nb_(3)C_(2)(OH)_(x),Hf_(3)C_(2)(OH)_(x),Ta_(3)C_(2)(OH)_(x),and W_(3)C_(2)(OH)_(x) were screened out based on their excellent stability.Zn,Pd,Ag,Cd,Au,and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis.Hf_(3)C_(2)(OH)_(x) with a Pd single atom delivers a theoretical overpotential of 81 mV.Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity.This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries,fuel cells,and other OER-based energy storage devices. 展开更多
关键词 MXene Single-atom catalysis oxygen evolution reaction High-throughput calculation Machine learning
下载PDF
Rational Design of Cost-Effective Metal-Doped ZrO_(2)for Oxygen Evolution Reaction
15
作者 Yuefeng Zhang Tianyi Wang +4 位作者 Liang Mei Ruijie Yang Weiwei Guo Hao Li Zhiyuan Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期385-396,共12页
The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stab... The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stable under OER operating conditions,exhibits inherently poor OER activity from experimental observations.Herein,we doped a series of metal elements to regulate the ZrO_(2)catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions.Microkinetic modeling as a function of the OER activity descriptor(G_(O*)-G_(HO*))displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO_(2)surface,among which Fe and Rh(in the form of single-atom dopant)reach the volcano peak(i.e.the optimal activity of OER under the potential of interest),indicating excellent OER performance.Free energy diagram calculations,density of states,and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO_(2),leading to low OER overpotential,high conductivity,and good stability.Considering cost-effectiveness,single-atom Fe doped ZrO_(2)emerged as the most promising catalyst for OER.This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production. 展开更多
关键词 oxygen evolution reaction Metal oxide ELECTROCATALYSIS Surface Pourbaix analysis DOPING
下载PDF
Deciphering the linear relationship in the activity of the oxygen reduction reaction on Pt electrodes:A decisive role of adsorbates
16
作者 Haowen Cui Yan-Xia Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期70-77,共8页
Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte s... Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte solution cannot be ignored.Consequently,we have systematically investigated the impact of adsorbate species and concentration,as well as solution pH,on the ORR activity on Pt(111)and Pt(poly)electrodes.The results all tend to establish a linear quantitative relationship between the onset potential for ORR and the adsorption equilibrium potential of the adsorbate.This finding indicates the decisive role of adsorbates in the onset potential for ORR,suggesting that the adsorption potential of adsorbates can serve as an intuitive criterion for ORR activity.Additional support for this conclusion is derived from experimental results obtained from the oxygen evolution reaction on Pt(poly)with different adsorbate species and from the hydrogen evolution reaction on Pt(111)with iodine adsorption.We further propose both an empirical equation for the onset potential for ORR and the concept of a potential-regulated adsor-bate shielding effect to elucidate the influence of adsorbates on ORR activity.This study provides new insights into the high onset overpotential of the ORR and offers potential strategies for predicting and enhancingORRactivity inthefuture. 展开更多
关键词 oxygen reduction reaction ACTIVITY ADSORBATE Equilibrium potential Pt(111)
下载PDF
Recent advances and key perspectives of in-situ studies for oxygen evolution reaction in water electrolysis
17
作者 Yi Wang Zichen Xu +1 位作者 Xianhong Wu Zhong-Shuai Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1497-1517,共21页
Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key hal... Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed. 展开更多
关键词 In-situ studies Water splitting oxygen evolution reaction Catalytic mechanism
下载PDF
Healing the structural defects of spinel MnFe_(2)O_(4) to enhance the electrocatalytic activity for oxygen reduction reaction
18
作者 Manting Tang Yue Zou +5 位作者 Zhiyong Jiang Peiyu Ma Zhiyou Zhou Xiaodi Zhu Jun Bao Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期12-19,I0001,共9页
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o... Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale. 展开更多
关键词 Spinel MnFe_(2)O_(4) oxygen reduction reaction Spinel inverse oxygen vacancies Eutectic molten salt
下载PDF
The role of strain in oxygen evolution reaction
19
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 oxygen evolution reaction Strain generation Tensile strain Compressive strain Strain mechanism Strain effects
下载PDF
Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity,durability and storage stability toward oxygen reduction reaction
20
作者 Ruiqi Cheng Kaiqi Li +5 位作者 Huanxin Li Tianshuo Zhao Yibo Wang Qingyue Xue Jiao Zhang Chaopeng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期103-111,I0003,共10页
Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in def... Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance. 展开更多
关键词 Van der Waals heterostructure oxygen reduction reaction Stability Scalable production Aluminum-air battery
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部