A few factors affecting plasma oxidation desulfurization of ethyl- thioether were investigated.Under the typical conditions,the conversion and degree of desulfurization of ethyl-thioether can be achieved up to 88% and...A few factors affecting plasma oxidation desulfurization of ethyl- thioether were investigated.Under the typical conditions,the conversion and degree of desulfurization of ethyl-thioether can be achieved up to 88% and 79% respectively.展开更多
The plasma liquid phase oxidation of n-heptane was investigated. The selectivity of product formation is far superior to plasma oxidation in the gas phase.
A few factors affecting plasma oxidation desulfurization of isobutyl mercaptan were investigated. Under the reasonable condition, the conversion and degree of desulfurization of isobutyl mercaptan can be achieved up t...A few factors affecting plasma oxidation desulfurization of isobutyl mercaptan were investigated. Under the reasonable condition, the conversion and degree of desulfurization of isobutyl mercaptan can be achieved up to over 95% and 94% respectively.展开更多
Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of ...Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping.展开更多
Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (...Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O(3P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6- 31 + G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.展开更多
基金The project was supported by National Natural Science Foundation of China
文摘A few factors affecting plasma oxidation desulfurization of ethyl- thioether were investigated.Under the typical conditions,the conversion and degree of desulfurization of ethyl-thioether can be achieved up to 88% and 79% respectively.
基金The project was supported by National Natural Science Foundation of China.
文摘The plasma liquid phase oxidation of n-heptane was investigated. The selectivity of product formation is far superior to plasma oxidation in the gas phase.
基金The project was supported by National Natural Science Foundation of China.
文摘A few factors affecting plasma oxidation desulfurization of isobutyl mercaptan were investigated. Under the reasonable condition, the conversion and degree of desulfurization of isobutyl mercaptan can be achieved up to over 95% and 94% respectively.
基金supported by the MOST(Grant nos.2013CB934000and 2014DFG71590)Beijing Municipal Program(Grant no.YETP0157)
文摘Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping.
基金supported by the National Natural Science Foundation of China (No. 21277082, 21177076, 71201093)the Promotive Research Fund for Excellent Young and Middleaged Scientists of Shandong Province (Nos. BS2012HZ009, BS2012SF012)+2 种基金Graduate Independent Innovation Foundation of Shandong University (No. yzc12120)Program for New Century Excellent Talents in University (NCET-13-0349)Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program (No. 295132)
文摘Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O(3P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6- 31 + G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.