Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the prom...Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts.Avoiding the use of intricate instruments,corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance.An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method,which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction(OER)in alkaline seawater.Notably,the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and100 mA·cm^(-2),respectively.The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.展开更多
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o...Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.展开更多
基金supported by the National Natural Science Foundation of China (No.51901018)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (YESS,2019QNRC001)+1 种基金the Natural Science Foundation of Beijing Municipality (No.2212037)the National Science and Technology Resources Investigation Program of China (No.2019FY 101400)。
文摘Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts.Avoiding the use of intricate instruments,corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance.An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method,which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction(OER)in alkaline seawater.Notably,the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and100 mA·cm^(-2),respectively.The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.
基金supported by the Youth Innovation Promotion Association(no.2015147)CAS and National Program on Key Basic Research Project(973 Program,2012CB215500)+1 种基金the Outstanding Youngest Scientist FoundationChinese Academy of Sciences(CAS)
文摘Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.