Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desor...Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of p...One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.展开更多
Objective While the technology of the molecular sieve oxygen generation system(MSOGS) onboard was used,pilots could not breathe pure oxygen to eliminate nitrogen during a high altitude flight.There is no report whethe...Objective While the technology of the molecular sieve oxygen generation system(MSOGS) onboard was used,pilots could not breathe pure oxygen to eliminate nitrogen during a high altitude flight.There is no report whether it is a threat to altitude decompression sickness(ADS) or not in that condition.This experiment was intended to observe the effects of breathing different oxygen-rich gases of MSOGS on denitrogenation,so that we could make the medical physiological requirements for MSOGS on-board and provide experimental basis for aeromedical supply.Method Eight healthy males were breathed oxygenrich gases(60%,70%,80%,90%and 99.6%) in turn for 60 min,and the concentration of nitrogen,oxygen,carbon dioxide and argon at the end of expiration interval in the oxygen mask were continuously measured by a flight mass spectrometer through the oxygen mask.According to the variety of the denitrogenation rate by breathing different oxygen-rich gases,its change law was analyzed.Results There were significant differences(P<0.05) about denitrogenation rate in different oxygen-rich gases due to different oxygen concentration and breathing time.The denitrogenation rate of pure oxygen was higher than that of the others.It was indicated that the concentration of nitrogen in lung would decrease along with the increase in oxygen concentration of oxygen-rich gases,and the nitrogen concentration in the lung almost decreased by 50% or even more if people were breathed 60%~90% oxygen-rich gas longer than 60 s.Conclusion The man-made respiration environment of low nitrogen can be provided by breathing oxygen-rich gases,although the denitrogenation velocity of breathing oxygen-rich gases is lower than that of breathing pure oxygen.So it can be used as a measure to eliminate and lower the nitrogen in the body to prevent from ADS.展开更多
基金supported by the National Basic Research Program of China(2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
基金National Research Foundation of Korea(NRF),Grant/Award Number:2021R1A2C2012685Korea Institute of Energy Technology Evaluation and Planning(KETEP),Grant/Award Number:20203020030010Ministry of Trade,Industry&Energy(MOTIE,Korea),Grant/Award Number:20020400。
文摘One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.
文摘Objective While the technology of the molecular sieve oxygen generation system(MSOGS) onboard was used,pilots could not breathe pure oxygen to eliminate nitrogen during a high altitude flight.There is no report whether it is a threat to altitude decompression sickness(ADS) or not in that condition.This experiment was intended to observe the effects of breathing different oxygen-rich gases of MSOGS on denitrogenation,so that we could make the medical physiological requirements for MSOGS on-board and provide experimental basis for aeromedical supply.Method Eight healthy males were breathed oxygenrich gases(60%,70%,80%,90%and 99.6%) in turn for 60 min,and the concentration of nitrogen,oxygen,carbon dioxide and argon at the end of expiration interval in the oxygen mask were continuously measured by a flight mass spectrometer through the oxygen mask.According to the variety of the denitrogenation rate by breathing different oxygen-rich gases,its change law was analyzed.Results There were significant differences(P<0.05) about denitrogenation rate in different oxygen-rich gases due to different oxygen concentration and breathing time.The denitrogenation rate of pure oxygen was higher than that of the others.It was indicated that the concentration of nitrogen in lung would decrease along with the increase in oxygen concentration of oxygen-rich gases,and the nitrogen concentration in the lung almost decreased by 50% or even more if people were breathed 60%~90% oxygen-rich gas longer than 60 s.Conclusion The man-made respiration environment of low nitrogen can be provided by breathing oxygen-rich gases,although the denitrogenation velocity of breathing oxygen-rich gases is lower than that of breathing pure oxygen.So it can be used as a measure to eliminate and lower the nitrogen in the body to prevent from ADS.