The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as...The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the h-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.展开更多
28 kinds of carotenoids are studied to reveal the key parameters and regulation on the singlet oxygen quenching rate.First,the quantum chemistry parameters of carotenoids calculated by Gaussian software combined with ...28 kinds of carotenoids are studied to reveal the key parameters and regulation on the singlet oxygen quenching rate.First,the quantum chemistry parameters of carotenoids calculated by Gaussian software combined with substitution parameters were used to construct the quantitative structure-activity relationship model(QSAR)of the singlet oxygen quenching rate of carotenoids.The key parameters affecting the antioxidant activity of carotenoids are revealed,and the data predicted via the QSAR model were provided for subsequent research.Then,a three-dimensional(3D)pharmacophore model was used to regulate and modify the antioxidant activity of carotenoids.The correlation coefficients of the modeling group(R2)and verification group(Rpre2)of the established QSAR model were 0.945 and 0.916,respectively,which can be used for the analysis of antioxidant activity of carotenoids;the antioxidant activity of carotenoids can be significantly regulated by the number of conjugated C=C bonds,the energy difference between frontier molecular orbitals and the partial Mulliken charge in C1 and theπ···π*excitation energy E(s);the antioxidant activity of carotenoids can be effectively regulated by the hydrogen bond acceptor pharmacophores on both sides of the conjugated C=C bonds and the hydrophobic groups on the conjugated C=C bond;the hydrophobic substituents attached to conjugated C=C bonds can effectively improve the singlet oxygen quenching rate of carotenoids.展开更多
We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, hig...We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.展开更多
基金Supported by Nation Natural Science Foundation of China (211202037)
文摘The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the h-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.
文摘28 kinds of carotenoids are studied to reveal the key parameters and regulation on the singlet oxygen quenching rate.First,the quantum chemistry parameters of carotenoids calculated by Gaussian software combined with substitution parameters were used to construct the quantitative structure-activity relationship model(QSAR)of the singlet oxygen quenching rate of carotenoids.The key parameters affecting the antioxidant activity of carotenoids are revealed,and the data predicted via the QSAR model were provided for subsequent research.Then,a three-dimensional(3D)pharmacophore model was used to regulate and modify the antioxidant activity of carotenoids.The correlation coefficients of the modeling group(R2)and verification group(Rpre2)of the established QSAR model were 0.945 and 0.916,respectively,which can be used for the analysis of antioxidant activity of carotenoids;the antioxidant activity of carotenoids can be significantly regulated by the number of conjugated C=C bonds,the energy difference between frontier molecular orbitals and the partial Mulliken charge in C1 and theπ···π*excitation energy E(s);the antioxidant activity of carotenoids can be effectively regulated by the hydrogen bond acceptor pharmacophores on both sides of the conjugated C=C bonds and the hydrophobic groups on the conjugated C=C bond;the hydrophobic substituents attached to conjugated C=C bonds can effectively improve the singlet oxygen quenching rate of carotenoids.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.