Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C...The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su...Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.展开更多
In this work on marine atmospheric corrosion the changes in oxygen reduction rate with decrease of electrolyte film thickness during drying was studied by Kelvin probe reference electrode technique andimpedance measur...In this work on marine atmospheric corrosion the changes in oxygen reduction rate with decrease of electrolyte film thickness during drying was studied by Kelvin probe reference electrode technique andimpedance measurements based on previous results. For > 50μm electrolyte film thickness, the oxygen diffusion in liquid controlled the oxygen reduction process.As the cathodic limiting currents increased to about lmA/cm2 with evaporation, the rate of oxygen transportation at the gas/liquid boundary limited thecurrent increase. If the thickness decreased to less than 10μm, the very heterogeneous current distributioncaused a sharp decrease in the total cathodic current due to the effect of the electrolyte film’s increased solution resistance. The calculated result on the basis of the assumption showed good agreement with the experimental findings.展开更多
Non-precious metal electrocatalysts(such as Fe-N-C materials) for the oxygen(O_(2)) reduction reaction demand a high catalyst loading in fuel cell devices to achieve workable performance. However, the extremely low so...Non-precious metal electrocatalysts(such as Fe-N-C materials) for the oxygen(O_(2)) reduction reaction demand a high catalyst loading in fuel cell devices to achieve workable performance. However, the extremely low solubility of O_(2) in water creates severe mass transport resistance in the thick catalyst layer of Fe-N-C catalysts. Here, we introduce silicalite-1 nanocrystals with hydrophobic cavities as sustainable O_(2) reservoirs to overcome the mass transport issue of Fe-N-C catalysts. The extra O_(2) supply to the adjacent catalysts significantly alleviated the negative effects of the severe mass transport resistance. The hybrid catalyst(Fe-N-C@silicalite-1) achieved a higher limiting current density than Fe-N-C in the half-cell test. In the H_(2)-O_(2) and H_2-air proton exchange membrane fuel cells, Fe-N-C@silicalite-1 exhibited a 16.3% and 20.2% increase in peak power density compared with Fe-N-C, respectively. The O_(2)-concentrating additive provides an effective approach for improving the mass transport imposed by the low solubility of O_(2) in water.展开更多
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP...We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.展开更多
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ...N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.展开更多
Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and ...Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and catalytic performance is still lacking.Herein,we present a synthetic strategy that uses transition-metal oxide-assisted thermal diffusion.PtCo/C catalysts with localized tetragonal distortion were obtained by controlling the thermal diffusion process of transition-metal elements.This localized structural distortion induced a significant strain effect on the nanoparticle surface,which further shortened the length of the Pt-Pt bond,improved the electronic state of the Pt surface,and enhanced the performance of the catalyst.PtCo/C catalysts with special short-range structures achieved excellent mass activity(2.27 Amg_(Pt)^(-1))and specific activity(3.34 A cm^(-2)).In addition,the localized tetragonal distortion-induced surface compression of the Pt skin improved the stability of the catalyst.The mass activity decreased by only 13% after 30,000 cycles.Enhanced catalyst activity and excellent durability have also been demonstrated in the proton exchange membrane fuel cell configuration.This study provides valuable insights into the development of advanced Pt-based nanocatalysts and paves the way for reducing noble-metal loading and increasing the catalytic activity and catalyst stability.展开更多
Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process ...Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.展开更多
Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen redu...Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR).In this study,we investigate a range of single-transition metal(STM_(1)=Sc_(1),Ti_(1),V_(1),Cr_(1),Mn_(1),Fe_(1),Co_(1),Ni_(1),Cu_(1),Zr_(1),Nb_(1),Mo_(1),Ru_(1),Rh_(1),Pd_(1),Ag_(1),W_(1),Re_(1),Os_(1),Ir_(1),Pt_(1),and Au_(1))atoms supported on graphyne(GY)surface for HER/OER and ORR using first-principle calculations.Ab initio molecular dynamics(AIMD)simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface.The exceptional stability of all supported STM_(1)atoms within the H1 cavity of the GY surface exists in an isolated form,facilitating the uniform distribution and proper arrangement of single atoms on GY.In particular,Sc_(1),Co_(1),Fe_(1),and Au_(1)/GY demonstrate promising catalytic efficiency in the HER due to idealisticΔG_(H^(*))values via the Volmer-Heyrovsky pathway.Notably,Sc_(1)and Au_(1)/GY exhibit superior HER catalytic activity compared to other studied catalysts.Co_(1)/GY catalyst exhibits higher selectivity and activity for the OER,with an overpotential(0.46 V)comparable to MoC_(2),IrO_(2),and RuO_(2).Also,Rh_(1)and Co_(1)/GY SACs exhibited promising electrocatalysts for the ORR,with an overpotential of 0.36 and0.46 V,respectively.Therefore,Co_(1)/GY is a versatile electrocatalyst for metal-air batteries and water-splitting.This study further incorporates computational analysis of the kinetic potential energy barriers of Co_(1)and Rh_(1)in the OER and ORR.A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps.We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM,/GY and introduce a key descriptor.This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.展开更多
The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetal...The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetallics composed of platinum and transition metals are considered to be promising candidates for this purpose.However,they typically face challenges such as unfavorable intrinsic activity and a propensity for particle aggregation,diminishing their ORR performance.Against this backdrop,we present our findings on a N-doped carbon confined Pt_(3)Co intermetallic doped with p-block metal tin(Pt_(3)Co_(x)Sn_(1-x)/NC).The introduction of Sn induces lattice strain due to its larger atomic size,which leads to the distortion of the Pt_(3)Co lattice structure,while the coupling of carbon polyhedra inhibits the particle aggregation.The optimized Pt_(3)Co_(0.8)Sn_(0.2)/NC catalyst demonstrates an impressive half-wave potential of 0.86 V versus RHE,surpassing both Pt_(3)Co/NC and Pt_(3)Sn/NC catalysts.Moreover,the Pt_(3)Co_(0.8)Sn_(0.2)/NC exhibits a mass-specific activity as high as 1.4 A mg_(Pt)^(-1),ranking it in the top level among the intermetallicsbased ORR electrocatalysts.When further employed as a cathode material in a self-assembled zinc-air battery,it shows stable operation for over 80 h.These results underscore the significant impact of lattice strain engineering through the strategic doping of p-block metal in the carbon-confined Pt_(3)Co intermetallic,thereby enhancing the catalytic efficiency for the ORR.展开更多
Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte s...Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte solution cannot be ignored.Consequently,we have systematically investigated the impact of adsorbate species and concentration,as well as solution pH,on the ORR activity on Pt(111)and Pt(poly)electrodes.The results all tend to establish a linear quantitative relationship between the onset potential for ORR and the adsorption equilibrium potential of the adsorbate.This finding indicates the decisive role of adsorbates in the onset potential for ORR,suggesting that the adsorption potential of adsorbates can serve as an intuitive criterion for ORR activity.Additional support for this conclusion is derived from experimental results obtained from the oxygen evolution reaction on Pt(poly)with different adsorbate species and from the hydrogen evolution reaction on Pt(111)with iodine adsorption.We further propose both an empirical equation for the onset potential for ORR and the concept of a potential-regulated adsor-bate shielding effect to elucidate the influence of adsorbates on ORR activity.This study provides new insights into the high onset overpotential of the ORR and offers potential strategies for predicting and enhancingORRactivity inthefuture.展开更多
Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a chal...Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.展开更多
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in def...Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.展开更多
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022MB106national training program of innovation and entrepreneurship for undergraduates,Grant/Award Number:202210424099National Natural Science Foundation of China,Grant/Award Numbers:21601067,21701057,21905147。
文摘The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金This study was financially supported by the National Natural Science Foundation of China(Grant/Award Number:22232004,22272179,21972068,and 22072067).
文摘Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.
文摘In this work on marine atmospheric corrosion the changes in oxygen reduction rate with decrease of electrolyte film thickness during drying was studied by Kelvin probe reference electrode technique andimpedance measurements based on previous results. For > 50μm electrolyte film thickness, the oxygen diffusion in liquid controlled the oxygen reduction process.As the cathodic limiting currents increased to about lmA/cm2 with evaporation, the rate of oxygen transportation at the gas/liquid boundary limited thecurrent increase. If the thickness decreased to less than 10μm, the very heterogeneous current distributioncaused a sharp decrease in the total cathodic current due to the effect of the electrolyte film’s increased solution resistance. The calculated result on the basis of the assumption showed good agreement with the experimental findings.
基金financially supported by the Natural Science Foundation of Beijing Municipality(No.Z200012)the National Natural Science Foundation of China(Nos.U21A20328 and 21975010)+2 种基金the National Key Research and Development Program of China(No. 2021YFB4000601)the China Postdoctoral Science Foundation(No.2022M720013)the Postdoctoral Fellowship Program of CPSF(No.GZB20230926)。
文摘Non-precious metal electrocatalysts(such as Fe-N-C materials) for the oxygen(O_(2)) reduction reaction demand a high catalyst loading in fuel cell devices to achieve workable performance. However, the extremely low solubility of O_(2) in water creates severe mass transport resistance in the thick catalyst layer of Fe-N-C catalysts. Here, we introduce silicalite-1 nanocrystals with hydrophobic cavities as sustainable O_(2) reservoirs to overcome the mass transport issue of Fe-N-C catalysts. The extra O_(2) supply to the adjacent catalysts significantly alleviated the negative effects of the severe mass transport resistance. The hybrid catalyst(Fe-N-C@silicalite-1) achieved a higher limiting current density than Fe-N-C in the half-cell test. In the H_(2)-O_(2) and H_2-air proton exchange membrane fuel cells, Fe-N-C@silicalite-1 exhibited a 16.3% and 20.2% increase in peak power density compared with Fe-N-C, respectively. The O_(2)-concentrating additive provides an effective approach for improving the mass transport imposed by the low solubility of O_(2) in water.
基金Funded by the National Natural Science Foundation of China(No.51521061)and“111”Project(No.B08040)。
文摘We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.
基金We acknowledge the National Natural Science Foundation of China(No.22275134)for fi nancial support.
文摘N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.
基金supported by the National Natural Science Foundation of China (Grant No.22278123).
文摘Platinum-based alloy nanoparticles are the most attractive catalysts for the oxygen reduction reaction at present,but an in-depth understanding of the relationship between their short-range structural information and catalytic performance is still lacking.Herein,we present a synthetic strategy that uses transition-metal oxide-assisted thermal diffusion.PtCo/C catalysts with localized tetragonal distortion were obtained by controlling the thermal diffusion process of transition-metal elements.This localized structural distortion induced a significant strain effect on the nanoparticle surface,which further shortened the length of the Pt-Pt bond,improved the electronic state of the Pt surface,and enhanced the performance of the catalyst.PtCo/C catalysts with special short-range structures achieved excellent mass activity(2.27 Amg_(Pt)^(-1))and specific activity(3.34 A cm^(-2)).In addition,the localized tetragonal distortion-induced surface compression of the Pt skin improved the stability of the catalyst.The mass activity decreased by only 13% after 30,000 cycles.Enhanced catalyst activity and excellent durability have also been demonstrated in the proton exchange membrane fuel cell configuration.This study provides valuable insights into the development of advanced Pt-based nanocatalysts and paves the way for reducing noble-metal loading and increasing the catalytic activity and catalyst stability.
基金the China Scholarship Council for the award of fellowship and funding(No.201806310128,201908510177)。
文摘Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.
基金the support of the research computing department of Khalifa Universityfinancially supported by the National Natural Science Foundation of China(Grant No.22033005)+1 种基金the National Key R&D Project(Grant Nos.2022YFA1503900 and 2022YFA1503000)the Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)
文摘Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR).In this study,we investigate a range of single-transition metal(STM_(1)=Sc_(1),Ti_(1),V_(1),Cr_(1),Mn_(1),Fe_(1),Co_(1),Ni_(1),Cu_(1),Zr_(1),Nb_(1),Mo_(1),Ru_(1),Rh_(1),Pd_(1),Ag_(1),W_(1),Re_(1),Os_(1),Ir_(1),Pt_(1),and Au_(1))atoms supported on graphyne(GY)surface for HER/OER and ORR using first-principle calculations.Ab initio molecular dynamics(AIMD)simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface.The exceptional stability of all supported STM_(1)atoms within the H1 cavity of the GY surface exists in an isolated form,facilitating the uniform distribution and proper arrangement of single atoms on GY.In particular,Sc_(1),Co_(1),Fe_(1),and Au_(1)/GY demonstrate promising catalytic efficiency in the HER due to idealisticΔG_(H^(*))values via the Volmer-Heyrovsky pathway.Notably,Sc_(1)and Au_(1)/GY exhibit superior HER catalytic activity compared to other studied catalysts.Co_(1)/GY catalyst exhibits higher selectivity and activity for the OER,with an overpotential(0.46 V)comparable to MoC_(2),IrO_(2),and RuO_(2).Also,Rh_(1)and Co_(1)/GY SACs exhibited promising electrocatalysts for the ORR,with an overpotential of 0.36 and0.46 V,respectively.Therefore,Co_(1)/GY is a versatile electrocatalyst for metal-air batteries and water-splitting.This study further incorporates computational analysis of the kinetic potential energy barriers of Co_(1)and Rh_(1)in the OER and ORR.A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps.We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM,/GY and introduce a key descriptor.This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.
基金Natural Science Foundation of Jiangsu Province (BK20210735)National Natural Science Foundation of China (52201269, 52302296)+4 种基金Collaborative Innovation Center of Suzhou Nano Science and Technologythe 111 Projectthe Suzhou Key Laboratory of Functional Nano and Soft MaterialsJiangsu Key Laboratory for Carbon-Based Functional Materials & Devicesthe funding from the Gusu leading talent plan for scientific and technological innovation and entrepreneurship (ZXL2022487)。
文摘The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetallics composed of platinum and transition metals are considered to be promising candidates for this purpose.However,they typically face challenges such as unfavorable intrinsic activity and a propensity for particle aggregation,diminishing their ORR performance.Against this backdrop,we present our findings on a N-doped carbon confined Pt_(3)Co intermetallic doped with p-block metal tin(Pt_(3)Co_(x)Sn_(1-x)/NC).The introduction of Sn induces lattice strain due to its larger atomic size,which leads to the distortion of the Pt_(3)Co lattice structure,while the coupling of carbon polyhedra inhibits the particle aggregation.The optimized Pt_(3)Co_(0.8)Sn_(0.2)/NC catalyst demonstrates an impressive half-wave potential of 0.86 V versus RHE,surpassing both Pt_(3)Co/NC and Pt_(3)Sn/NC catalysts.Moreover,the Pt_(3)Co_(0.8)Sn_(0.2)/NC exhibits a mass-specific activity as high as 1.4 A mg_(Pt)^(-1),ranking it in the top level among the intermetallicsbased ORR electrocatalysts.When further employed as a cathode material in a self-assembled zinc-air battery,it shows stable operation for over 80 h.These results underscore the significant impact of lattice strain engineering through the strategic doping of p-block metal in the carbon-confined Pt_(3)Co intermetallic,thereby enhancing the catalytic efficiency for the ORR.
基金supported by the National Natural Science Foundation of China(no.22372154,21972131).
文摘Despite substantial efforts in developing high-performance catalysts for the oxygen reduction reaction(ORR),the persistent challenge lies in the high onset overpotential of the ORR,and the effect of the elec-trolyte solution cannot be ignored.Consequently,we have systematically investigated the impact of adsorbate species and concentration,as well as solution pH,on the ORR activity on Pt(111)and Pt(poly)electrodes.The results all tend to establish a linear quantitative relationship between the onset potential for ORR and the adsorption equilibrium potential of the adsorbate.This finding indicates the decisive role of adsorbates in the onset potential for ORR,suggesting that the adsorption potential of adsorbates can serve as an intuitive criterion for ORR activity.Additional support for this conclusion is derived from experimental results obtained from the oxygen evolution reaction on Pt(poly)with different adsorbate species and from the hydrogen evolution reaction on Pt(111)with iodine adsorption.We further propose both an empirical equation for the onset potential for ORR and the concept of a potential-regulated adsor-bate shielding effect to elucidate the influence of adsorbates on ORR activity.This study provides new insights into the high onset overpotential of the ORR and offers potential strategies for predicting and enhancingORRactivity inthefuture.
基金This work was supported by the National Natural Science Foundation of China(22279008 and 22109082)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金financially supported by the National Natural Science Foundation of China (51874197)the Natural Science Foundation of Shanghai (21ZR1429400,22ZR1429700)。
文摘Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.