期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
STUDY ON TOLERANCE TO OXYGEN DEFICIENCY,GENETIC STABILITY AND ECOLOGICAL FITNESS OF PSOCID, Liposcelis bostrychophila BADONNEL (Psoceoptera:Iposcelididae) 被引量:5
1
作者 王进军 赵志模 李隆术 《Zoological Research》 CAS CSCD 1999年第2期104-110,共7页
At the present paper,adult populations of the psocid, Liposcelis bostrychophila ,were exposed respectively for 30 generations to two atmospheres containing 0 5% and 1% O 2 (N 2 in mixture as balance),in order to... At the present paper,adult populations of the psocid, Liposcelis bostrychophila ,were exposed respectively for 30 generations to two atmospheres containing 0 5% and 1% O 2 (N 2 in mixture as balance),in order to select strains resistant to low O 2 content (LOC) atmosphere.Selection pressure was maintained at around 70% mortality.At the 30th generation,comparison of sensitivity between the selected strains (LOC1 and LOC2) and the original susceptible strain (CA S) indicated a tolerance factor (TF) at the 50% mortality level (LT 50 ) of 4 7 and 3 9 fold,respectively.Throughout the selection process,log time against probit mortality lines remained roughly parallel and the slopes remained lower than that of CA S strain until the last generation.The implication is that at high level of selection,multiple genetic factors continued act together even at the 30th generation to select for adaptation to survival at depleted O 2 concentration.Up to 30th generation,two selected strains still possessed the genetic potential to develop resistance to LOC.Removal of selection pressure for 5 generations from 2 sub populations of two selected strains from 25th generation caused significant reduction in resistance.In the absence of CA exposure,the two selected strains all possessed the reproductive disadvantages or fitness defect.LOC1 and LOC2 were calculated by R 0 to have a fitness value of 0 56 and 0 75 relative to unselected strain,respectively. 展开更多
关键词 Liposcelis bostrychophila Depleted oxygen tolerance STABILITY FITNESS
下载PDF
Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance 被引量:5
2
作者 Wei-Bin Cai Dong-Dong Liu +2 位作者 Ying Chen Li Zhang Jian-Bo Tan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第9期1127-1137,共11页
Polymerization-induced self-assembly(PISA)is an emerging method for the preparation of block copolymer nano-objects at high concentrations.However,most PISA formulations have oxygen inhibition problems and inert atmos... Polymerization-induced self-assembly(PISA)is an emerging method for the preparation of block copolymer nano-objects at high concentrations.However,most PISA formulations have oxygen inhibition problems and inert atmospheres(e.g.argon,nitrogen)are usually required.Moreover,the large-scale preparation of block copolymer nano-objects at room temperature is challenging.Herein,we report an enzyme-assisted photoinitiated polymerization-induced self-assembly(photo-PISA)in continuous flow reactors with oxygen toleranee.The addition of glucose oxidase(GOx)and glucose into the reaction mixture can consume oxygen efficiently and constantly,allow the flow photo-PISA to be performed under open-air conditions.Polymerization kinetics indicated that only a small amount of GOx(0.5 μmol/L)was needed to achieve the oxygen tolerance.Block copolymer nano-objects with different morphologies can be prepared by varying reaction conditions including the degree of polymerization(DP)of core-forming block,monomer concentration,reaction temperature,and solvent composition.We expect this study will provide a facile platform for the large-scale production of block copolymer nano-objects with different morphologies at room temperature. 展开更多
关键词 Polymerization-induced self-assembly Reversible addition-fragmentation chain transfer(RAFT)polymerization PHOTOINITIATION oxygen tolerance
原文传递
Oxygen tolerance capacity of upflow anaerobic solid-state(UASS) with anaerobic filter(AF) system 被引量:2
3
作者 Yao Meng Carsten Jost +2 位作者 Jan Mumme Kaijun Wang Bernd Linke 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期200-206,共7页
In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state(UASS)with anaerobic filter(AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was inves... In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state(UASS)with anaerobic filter(AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0–431 m L O2/gvswere conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431 m L O2/gvsincreased the methane yield by 82.2%. Aeration intensities of 0–355 m L O2/gvswere conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen(DO) of UASS and AF reactors kept around 1.39 ±0.27 and 0.99 ± 0.38 mg/L, respectively. p H was relatively stable around 7.11 ± 0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85 ± 7 m L/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. 展开更多
关键词 Anaerobic digestion oxygen tolerance capacity UASS Maize straw Microaeration Solid-state
原文传递
Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes 被引量:1
4
作者 Biswajit Mondal Pritha Sen Abhishek Dey 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1327-1331,共5页
Hydrogen evolution in the presence of atmospheric level of oxygen is a significant barrier in the quest for an alternative,sustainable and green source of energy to counter the depleting fossil fuel sources and increa... Hydrogen evolution in the presence of atmospheric level of oxygen is a significant barrier in the quest for an alternative,sustainable and green source of energy to counter the depleting fossil fuel sources and increasing global warming due to fossil fuel burning.Oxygen reduction is thermodynamically more favourable than proton reduction and it often produces reactive oxygenated species upon partial reduction which deactivates the catalyst.Thus,catalyst development is required for efficient proton reduction in the presence of oxygen.Here,we demonstrate an iron porphyrin having triazole containing 2nd sphere hydrogen bonding residues appended with redox active ferrocene moieties(α4-Tetra-2-(3-ferrocenyl-1,2,3-triazolyl)phenylporphyrin(FeFc4))as a bifunctional catalyst for fast and selective oxygen reduction to water and thus,preventing the proton reduction by the same catalyst from oxidative stress.Fe(0)is the active species for proton reduction in these iron porphyrin class of complexes and it is observed that the kinetics of proton reduction at Fe(0)state occurs at much faster rate than O2 reduction and thus,paving the way for selective proton reduction in the presence of oxygen. 展开更多
关键词 Iron porphyrin Hydrogen evolution reaction oxygen tolerance ELECTROCATALYSIS KINETICS
下载PDF
Hydrogenase as the basis for green hydrogen production and utilization
5
作者 Haishuo Ji Lei Wan +8 位作者 Yanxin Gao Ping Du Wenjin Li Hang Luo Jiarui Ning Yingying Zhao Huangwei Wang Lixin Zhang Liyun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期348-362,I0011,共16页
Hydrogenase is a paradigm of highly efficient biocatalyst for H_(2) production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catal... Hydrogenase is a paradigm of highly efficient biocatalyst for H_(2) production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catalysts for the hydrogen economy, the poor oxygen tolerance and low yield of hydrogenases largely hinder their practical application. In these years, the enigmas surrounding hydrogenases regarding their structures, oxygen tolerance, mechanisms for catalysis, redox intermediates, and proton-coupled electron transfer schemes have been gradually elucidated;the schemes, which can well couple hydrogenases with other highly efficient(in)organic and biological catalysts to build novel reactors and drive valuable reactions, make it possible for hydrogenases to find their niches. To see how scientists put efforts to tackle this issue and design novel reactors in the fields where hydrogenases play crucial roles, in this review,recent advances were summarized, including different strategies for protecting enzyme molecules from oxygen, enzyme-based assembling systems for H_(2) evolution in the photoelectronic catalysis, enzymatic biofuel cells for H_(2) utilization and storage and the efficient electricity-hydrogen-carbohydrate cycle for high-purity hydrogen and biofuel automobiles. Limitations and future perspectives of hydrogenasebased applications in H_(2) production and utilization with great impact are discussed. In addition, this review also provides a new perspective on the use of biohydrogen in healthcare beyond energy. 展开更多
关键词 HYDROGENASE Biological H_(2)energy oxygen tolerance Artificial photosynthesis Biofuel cells
下载PDF
Living Bacteria-Mediated Aerobic Photoinduced Radical Polymerization for in Situ Bacterial Encapsulation and Differentiation 被引量:2
6
作者 Huan Lu Yiming Huang +3 位作者 Fengting Lv Libing Liu Yuguo Ma Shu Wang 《CCS Chemistry》 CAS 2021年第7期1296-1305,共10页
Conventional polymerizations mediated by living cells typically require synthetic transition-metal complexes or photoredox catalysts.Herein,we report an alternative photoinduced polymerization strategy for preparing f... Conventional polymerizations mediated by living cells typically require synthetic transition-metal complexes or photoredox catalysts.Herein,we report an alternative photoinduced polymerization strategy for preparing functional polymer hydrogels through bacteria-initiated radical polymerization of acrylamides in ordinary culture media.Upon light irradiation under ambient conditions,polyacrylamides were obtained with molecular weights of over 150 kDa using various bacteria. 展开更多
关键词 bacteria-mediated polymerization oxygen tolerance electron spin resonance selfencapsulating hydrogel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部