Simultaneously adjusting the surface,crystallographic and electronic structures of nanomaterials provide a new avenue for rational design of advanced photocatalyst yet it is challenging.In this work,a surface and stru...Simultaneously adjusting the surface,crystallographic and electronic structures of nanomaterials provide a new avenue for rational design of advanced photocatalyst yet it is challenging.In this work,a surface and structural engineering strategy is developed to simultaneously realize the 2D amorphous structure and oxygen(O)-doping in graphitic carbon nitride(g–C_(3)N_(4))via the assistance of supercritical carbon dioxide(SCCO_(2)).The 2D O-doped amorphous g-C_(3)N_(4)nanosheets display greatly enhanced photocatalytic CO_(2)reduction and methylene blue degradation performances.The synthesis method as well as the mechanism of the enhanced photocatalytic activity was investigated,wherein the introduction of 2D amorphous structure and O dopant in the g-C_(3)N_(4)contributes to the increased surface area,abundant active sites,wider visible-light absorption range and efficient charge separation property,and thus the outstanding photocatalytic activities can be obtained.Its photocatalytic CH_(4)evolution rate and MB degradation rete are 5.1 and 7.0 times enhancement over bulk crystalline g-C_(3)N_(4),respectively.This work presents a great promising way for designing and developing advanced photocatalysts.展开更多
Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers...Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers.Rational designed the structure and doping elements become important alternative routes to improve the performance of photocatalyst.In this work,we rational designed oxygen-doped graphitic carbon nitride(OCN)nanotubes derived from supermolecular intermediates for photocata lytic water splitting.The as prepared OCN nanotubes exhibit an outstanding hydrogen evolution rate of 73.84μmol h^(-1),outperforming the most of reported one dimensional(1D)g-C_(3)N_(4) previously.Due to the rational oxygen doping,the band structure of g-C_(3)N_(4) is meliorated,which can narrow the band gap and reduce the recombination rate of photogene rated carriers.Furthermore,the hollow nanotube structure of OCN also provide multiple diffuse reflection during photocata lytic reaction,which can significantly promote the utilization capacity of visible light and enhance the photocatalytic water splitting performance.It is believed that our work not only rationally controls the nanostructure,but also introduces useful heteroatom into the matrix of photocatalyst,which provides an effective way to design high-efficiency g-C_(3)N_(4) photocatalyst.展开更多
Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores w...Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.展开更多
Hydrogen acquisition from solar energy is an effective way to address energy crisis,which makes the development of efficient photocatalysts become the main direction of scientific research.Herein,cobalt phthalocyanine...Hydrogen acquisition from solar energy is an effective way to address energy crisis,which makes the development of efficient photocatalysts become the main direction of scientific research.Herein,cobalt phthalocyanine/oxygen-doped g-C_(3)N_(4)(CoPc/OCN) S-scheme heterojunction photocatalyst was designed by coupling multi-step calcination with solvothermal method for enhanced photothermal-assisted photocatalytic H_(2) evolution.The multistep calcined g-C_(3)N_(4) is easier for O-doping formation,and the ethanol solvothermal strategy is utilized to enhance the dispersion of CoPc on OCN nano sheet surface and forms sufficient S-scheme heterojunction through H-bonds.In addition,the active sites and excellent photothermal properties of CoPc itself further improve the integrated photocatalytic activity of CoPc/OCN S-scheme heterojunction.The optimal photocatalytic hydrogen evolution rate of CoPc/OCN S-scheme heterojunction photocatalyst reached 9.56 mmol·g^(-1)·h^(-1),which is 2.69 and 1.23 times higher than that of CN and OCN,respectively.This work provides a valuable design idea and scheme for enhancing the multi-factor co-assisted photocatalytic H_(2) evolution performance.展开更多
The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo ...The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo S_(2).However,the catalytic activity of Mo S_(2)mainly relies on edge sites,but is limited by inert basal planes.We herein report a novel,facile,ethylene glycol enabled competing reduction strategy to dope Mo S_(2)homogeneously with oxygen atoms so that its inert basal planes can be unlocked.Ethylene glycol works as a reducing agent and competes with thiourea to react with ammonium molybdate,leading to insufficient sulfuration of Mo,and consequent formation of O-Mo S_(2).Our theoretical and experimental investigations indicate that the homogeneously distributed O dopants can create abundant adsorption/-catalytic sites in the Mo S_(2)basal planes,enlarge the inter-plane distance to promote ion transport,and thus enhance the catalytic conversion of polysulfides.The oxygen doped Mo S_(2)(O-Mo S_(2))is supported on carbon nanosheets(CNS)and the composite(O-Mo S_(2)/CNS)is employed to modify the separator of Li-S battery.It gives the battery an initial discharge capacity of 1537 m Ah g-1at 0.2 C,and the battery retains a discharge capacity of 545 m Ah g-1after ultra-long 2000 cycles at 1 C,corresponding to a very small cyclic decay rate of 0.0237%.Even under a raising sulfur loading of 8.2 mg cm^(-2),the Li-S battery also delivers a high discharge capacity(554 m Ah g^(-1))with outstanding cycle stability(84.6%capacity retention)after 100 cycles at 0.5 C.Our work provides a novel,facile approach to fabricate highly catalytically active oxygen-doped Mo S_(2)for advanced Li-S batteries.展开更多
Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowir...Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous_ defect-rich O-incorporated {0001} MoS2 facet surrounded CdS NW stems are ultrathin nanosheets (NSs), and {1120}- grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g^-1·h^-1 and a quantum yield of 22.0% at ,λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.展开更多
Nano Research volume 13,pages1704–1712(2020)Cite this article 191 Accesses Metrics details Abstract Intelligent gas sensors based on the layered transition metal dichalcogenides(TMDs)have attracted great interest in ...Nano Research volume 13,pages1704–1712(2020)Cite this article 191 Accesses Metrics details Abstract Intelligent gas sensors based on the layered transition metal dichalcogenides(TMDs)have attracted great interest in the field of gas sensing due to their multiple active sites,fast electron,mass transfer capability and large surface-to-volume ratio.However,conventional TMDs-based sensors typically work at elevated temperature in inert atmosphere,which would largely limit the corresponding practical applications.Herein,novel oxygen-doped MoSe2 hierarchical nanostructures composed of ultrathin nanosheets with large specific surface area have been designed and generated typically at 200°C in air for fast and facile gas sensing of trimethylamine(TMA),effectively.Benefited from the gas-accessible hierarchical morphology and high surface area with abundant nanochannels,highly sensitive and selective detection of trace TMA has been achieved under ambient condition,and as detected the theoretical limit of detection(LOD)is 8 ppb,which is the lowest for TMA detection under ambient condition among the reported studies.The mechanism of oxygen doping on the improved gas-sensing performance has been investigated,revealing that the oxygen doping could greatly optimize the electronic structure,thus regulate the Fermi level of MoSe2 as well as the affinity between TMA molecule and sensor surface.It is expected that the oxygen doping strategy developed for the highly efficient gas sensors based on TMDs in present work may also be applicable to other types of gas-sensing semiconductors,which could open up a new direction for the rational design of high-performance gas sensors working under ambient condition.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21773216,51173170,21703207)the financial support from the Innovation Talents Award of Henan Province(114200510019)+1 种基金Science and Technology Program from Henan province(152102410010)the China Postdoctoral Science Foundation(No.2018T110738)。
文摘Simultaneously adjusting the surface,crystallographic and electronic structures of nanomaterials provide a new avenue for rational design of advanced photocatalyst yet it is challenging.In this work,a surface and structural engineering strategy is developed to simultaneously realize the 2D amorphous structure and oxygen(O)-doping in graphitic carbon nitride(g–C_(3)N_(4))via the assistance of supercritical carbon dioxide(SCCO_(2)).The 2D O-doped amorphous g-C_(3)N_(4)nanosheets display greatly enhanced photocatalytic CO_(2)reduction and methylene blue degradation performances.The synthesis method as well as the mechanism of the enhanced photocatalytic activity was investigated,wherein the introduction of 2D amorphous structure and O dopant in the g-C_(3)N_(4)contributes to the increased surface area,abundant active sites,wider visible-light absorption range and efficient charge separation property,and thus the outstanding photocatalytic activities can be obtained.Its photocatalytic CH_(4)evolution rate and MB degradation rete are 5.1 and 7.0 times enhancement over bulk crystalline g-C_(3)N_(4),respectively.This work presents a great promising way for designing and developing advanced photocatalysts.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province(2019B010937001)the National Natural Science Foundation of China(50702022,51577070,51702056 and U1601208)+1 种基金Natural Science Foundation of Guangdong Province(2019A1515012129)Science and Technology Planning Project of Guangdong Province(2016B090932005)。
文摘Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers.Rational designed the structure and doping elements become important alternative routes to improve the performance of photocatalyst.In this work,we rational designed oxygen-doped graphitic carbon nitride(OCN)nanotubes derived from supermolecular intermediates for photocata lytic water splitting.The as prepared OCN nanotubes exhibit an outstanding hydrogen evolution rate of 73.84μmol h^(-1),outperforming the most of reported one dimensional(1D)g-C_(3)N_(4) previously.Due to the rational oxygen doping,the band structure of g-C_(3)N_(4) is meliorated,which can narrow the band gap and reduce the recombination rate of photogene rated carriers.Furthermore,the hollow nanotube structure of OCN also provide multiple diffuse reflection during photocata lytic reaction,which can significantly promote the utilization capacity of visible light and enhance the photocatalytic water splitting performance.It is believed that our work not only rationally controls the nanostructure,but also introduces useful heteroatom into the matrix of photocatalyst,which provides an effective way to design high-efficiency g-C_(3)N_(4) photocatalyst.
基金financially supported by National National Key Research and Development Program of China (2019YFC1907801, 2018YFC1900305, 2018YFC1901601, 2018YFC1901602)the Natural Science Foundation of China (52004334, 51622406, 51634009 and U1704252)+4 种基金National 111 Project (No. B14034)the National Key R&D Program of China (2018YFC1901901)the Collab-orative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, Found of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2017-13)the Fundamental Research Funds for the Central Universities of Central South University (2019zzts1712020zzts203)the Hunan Provincial Innovation Foundation for Postgraduate (CX20190227)。
文摘Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.
基金financially supported by the National Natural Science Foundation of China (Nos.21906072, 21906039, 21908115 and 22006057)Hebei Province 333 Talents Project (No.A202101020)+3 种基金the Science and Technology Project of Hebei Education Department (No.BJ2021010)the Graduate Student Innovation Ability Training Funding Project of Hebei Province (No.CXZZSS2023129)the Open Fund for Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse (No.HSZYL2022002)Instrumental Analysis Center, Jiangsu University of Science and Technology。
文摘Hydrogen acquisition from solar energy is an effective way to address energy crisis,which makes the development of efficient photocatalysts become the main direction of scientific research.Herein,cobalt phthalocyanine/oxygen-doped g-C_(3)N_(4)(CoPc/OCN) S-scheme heterojunction photocatalyst was designed by coupling multi-step calcination with solvothermal method for enhanced photothermal-assisted photocatalytic H_(2) evolution.The multistep calcined g-C_(3)N_(4) is easier for O-doping formation,and the ethanol solvothermal strategy is utilized to enhance the dispersion of CoPc on OCN nano sheet surface and forms sufficient S-scheme heterojunction through H-bonds.In addition,the active sites and excellent photothermal properties of CoPc itself further improve the integrated photocatalytic activity of CoPc/OCN S-scheme heterojunction.The optimal photocatalytic hydrogen evolution rate of CoPc/OCN S-scheme heterojunction photocatalyst reached 9.56 mmol·g^(-1)·h^(-1),which is 2.69 and 1.23 times higher than that of CN and OCN,respectively.This work provides a valuable design idea and scheme for enhancing the multi-factor co-assisted photocatalytic H_(2) evolution performance.
基金financial support from the fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)the Science and Technology Innovation Fund of Dalian(2018J12GX052)+3 种基金the National Natural Science Foundation of China(21776042,22108027)the Fundamental Research Funds for the Central Universities of China(DUT19ZD214)the Shenzhen Science and Technology Program(201908163000519)the GDSTC-Key R&D Project(GDSTC No.2019B090908001)。
文摘The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo S_(2).However,the catalytic activity of Mo S_(2)mainly relies on edge sites,but is limited by inert basal planes.We herein report a novel,facile,ethylene glycol enabled competing reduction strategy to dope Mo S_(2)homogeneously with oxygen atoms so that its inert basal planes can be unlocked.Ethylene glycol works as a reducing agent and competes with thiourea to react with ammonium molybdate,leading to insufficient sulfuration of Mo,and consequent formation of O-Mo S_(2).Our theoretical and experimental investigations indicate that the homogeneously distributed O dopants can create abundant adsorption/-catalytic sites in the Mo S_(2)basal planes,enlarge the inter-plane distance to promote ion transport,and thus enhance the catalytic conversion of polysulfides.The oxygen doped Mo S_(2)(O-Mo S_(2))is supported on carbon nanosheets(CNS)and the composite(O-Mo S_(2)/CNS)is employed to modify the separator of Li-S battery.It gives the battery an initial discharge capacity of 1537 m Ah g-1at 0.2 C,and the battery retains a discharge capacity of 545 m Ah g-1after ultra-long 2000 cycles at 1 C,corresponding to a very small cyclic decay rate of 0.0237%.Even under a raising sulfur loading of 8.2 mg cm^(-2),the Li-S battery also delivers a high discharge capacity(554 m Ah g^(-1))with outstanding cycle stability(84.6%capacity retention)after 100 cycles at 0.5 C.Our work provides a novel,facile approach to fabricate highly catalytically active oxygen-doped Mo S_(2)for advanced Li-S batteries.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 21431003 and 21521091) and China Ministry of Science and Technology (No. 2016YFA0202801). We also thank Dr. Lina Zhang and Ms. Xiaohua Gu for their kind help with the TEM measurements.
文摘Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous_ defect-rich O-incorporated {0001} MoS2 facet surrounded CdS NW stems are ultrathin nanosheets (NSs), and {1120}- grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g^-1·h^-1 and a quantum yield of 22.0% at ,λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.U1932150 and 21571166)Anhui Provincial Natural Science Foundation(No.1908085QB72)the Fundamental Research Funds for the Central Universities(No.WK2060190099).
文摘Nano Research volume 13,pages1704–1712(2020)Cite this article 191 Accesses Metrics details Abstract Intelligent gas sensors based on the layered transition metal dichalcogenides(TMDs)have attracted great interest in the field of gas sensing due to their multiple active sites,fast electron,mass transfer capability and large surface-to-volume ratio.However,conventional TMDs-based sensors typically work at elevated temperature in inert atmosphere,which would largely limit the corresponding practical applications.Herein,novel oxygen-doped MoSe2 hierarchical nanostructures composed of ultrathin nanosheets with large specific surface area have been designed and generated typically at 200°C in air for fast and facile gas sensing of trimethylamine(TMA),effectively.Benefited from the gas-accessible hierarchical morphology and high surface area with abundant nanochannels,highly sensitive and selective detection of trace TMA has been achieved under ambient condition,and as detected the theoretical limit of detection(LOD)is 8 ppb,which is the lowest for TMA detection under ambient condition among the reported studies.The mechanism of oxygen doping on the improved gas-sensing performance has been investigated,revealing that the oxygen doping could greatly optimize the electronic structure,thus regulate the Fermi level of MoSe2 as well as the affinity between TMA molecule and sensor surface.It is expected that the oxygen doping strategy developed for the highly efficient gas sensors based on TMDs in present work may also be applicable to other types of gas-sensing semiconductors,which could open up a new direction for the rational design of high-performance gas sensors working under ambient condition.