期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
CO_(2)capture costs of chemical looping combustion of biomass:A comparison of natural and synthetic oxygen carrier
1
作者 Benjamin Fleiß Juraj Priscak +3 位作者 Martin Hammerschmid Josef Fuchs Stefan Müller Hermann Hofbauer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期296-310,共15页
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ... Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology. 展开更多
关键词 Chemical looping combustion BECCS Techno-economic assessment CO_(2)capture costs Oxygen carrier development Synthetic materials ILMENITE
下载PDF
Simulation and Experiment for Oxygen-enriched Combustion Engine Using Liquid Oxygen to Solidify CO2 被引量:5
2
作者 LIU Yongfeng JIA Xiaoshe +3 位作者 PEI Pucheng LU Yong YI Li SHI Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期188-194,共7页
For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techni... For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine. 展开更多
关键词 internal combustion Rankle cycle engine CO2 emission reduction carbon-sequestration with liquid oxygen KIVA-3V program oxygen-enriched combustion numerical simulation experiments
下载PDF
Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies 被引量:4
3
作者 Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2255-2265,共11页
Aqueous ammonia(NH3) is a promising alternative solvent for the capture of industrial CO_2 emissions, given its high chemical stability and CO_2 removal capacity, and low material costs and regeneration energy. NH3 al... Aqueous ammonia(NH3) is a promising alternative solvent for the capture of industrial CO_2 emissions, given its high chemical stability and CO_2 removal capacity, and low material costs and regeneration energy. NH3 also has potential for capturing multiple flue gas components, including NOx, SOxand CO_2, and producing value-added chemicals. However, its high volatility and low reactivity towards CO_2 limit its economic viability. Considerable efforts have been made to advance aqueous NH3-based post-combustion capture technologies in the last few years: in particular, General Electric's chilled NH3 process, CSIRO's mild-temperature aqueous NH3 process and SRI International's mixed-salts(NH3 and potassium carbonate) technology. Here, we review these research activities and other developments in the field, and outline future research needed to further improve aqueous NH3-based CO_2 capture technologies. 展开更多
关键词 Aqueous AMMONIA NH3 Post-combustion capture AMMONIA loss Regeneration energy AMINES
下载PDF
Modelling of a tubular membrane contactor for pre-combustion CO_2 capture using ionic liquids:Influence of the membrane configuration, absorbent properties and operation parameters 被引量:3
4
作者 Zhongde Dai Muhammad Usman +1 位作者 Magne Hillestad Liyuan Deng 《Green Energy & Environment》 SCIE 2016年第3期266-275,共10页
A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehen... A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. 展开更多
关键词 CO2 capture Pre-combustion Membrane contactor Ionic liquids MODELLING
下载PDF
Mechanism of sulfur capture during coal briquette combustion
5
作者 Lu Xin, Lin Guo zhen, Zhuang Ya hui Research Center for Eco Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第4期69-74,共6页
The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been ca... The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been carried out by using X ray diffraction (XRD), Messbauer spectroscopy (MS), scanning electron microscopy (SEM), energy dispersion X ray analysis (EDAX), and electron spectroscopy for chemical analysis (ESCA). No other sulfur containing species besides CaSO 4 was found. Small amount of CaFe 3(SiO 4) 2OH, some complexes of CaO SiO 2 Fe 2O 3 and vitreous iron oxides were identified on the surface of CaSO 4 grains. This might explain the mechanism of sulfur fixation during coal briquettes combustion. 展开更多
关键词 coal briquette sulfur capture high temperature combustion.
下载PDF
Experimental Study of the Absorption and Regeneration Performance of Several Candidate Solvents for PostCombustion CO_2 Capture
6
作者 Gao Jie Chen Xin +3 位作者 Tong Ming Kang Wanzhong Zhou Yanbo Lu Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期55-64,共10页
At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. I... At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. In the present work, the absorption and regeneration performance of a hybrid solvent MEA-methanol was studied and compared to the aqueous solutions of monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA) in a bubbling reactor. Also the performance of MEA-methanol solutions(including the absorption performance, regeneration performance,cyclic absorption performance, density and viscosity) was studied with different MEA concentrations. A pilot-plant CO_2 capture test bed was used to study the potential of MEA-methanol to replace aqueous MEA in industrial use. The results showed that the initial absorption rate of MEA-methanol solvent is the fastest compared with other solvents. The 30% MEA-methanol had a faster mass transfer coefficient, a higher CO_2 absorption efficiency and a lower regeneration energy consumption than aqueous MEA. And through the study of the reaction heat of CO_2 into MEA-methanol and aqueous MEA,it can be concluded that the desorption heat of rich MEA-methanol is only about 30% of rich aqueous MEA solvent in the regeneration process which showed that 30% MEA-methanol solvent is a promising candidate for CO_2 capture. 展开更多
关键词 MEA MEA-methanol post combustion CO2 capture ABSORPTION REGENERATION
下载PDF
Study on CO_2 Absorption by Aqueous Benzylamine and Its Formulations with Monoethanolamine as a Component for Post-Combustion Capture Process
7
作者 Gao Jie Yin Jun +5 位作者 Zhu Feifei Chen Xin Tong Ming Kang Wanzhong Zhou Yanbo Lu Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第3期7-14,共8页
Benzylamine(BZA) has been identified as a promising candidate for CO_2 capture process; however the evaluation of BZA in the packed column was very few. Thus, in this work, the absorption and regeneration performance ... Benzylamine(BZA) has been identified as a promising candidate for CO_2 capture process; however the evaluation of BZA in the packed column was very few. Thus, in this work, the absorption and regeneration performance of unblended BZA solvent as well as a series of amine concentrations and ratios in the formulations were studied using a semibatch bubbling reactor. And due to the formation of ivory-white precipitates in solvents containing higher BZA ratios, a 4:1 molar ratio of MEA/BZA mixed solvent was used to study its performance in a pilot-scale test bed. The results showed that a higher BZA ratio in the MEA/BZA mixed solvent resulted in a faster absorption rate, a higher mass transfer and heat transfer rate and a better cyclic performance, but the mass transfer rate of BZA decreased more quickly than MEA with the increase of CO_2 loading of the solvents. In addition, at high CO_2 loading in the MEA/ BZA mixed solvent with a molar ratio of 4:1, the ivory-white precipitates were generated which could cause blockage of the packing in the absorber, the stripper and the liquid pipelines. 展开更多
关键词 BENZYLAMINE (BZA) MONOETHANOLAMINE (MEA) post combustion CO2 capture PILOT plant mass transfer
下载PDF
Flexible Co-Combustion of High Ratios of Sustainable Biomass with Coal in Oxy-CFB Boiler for CO<sub>2</sub>Capture
8
作者 Jose A. Gutiérrez Bravo Raquel Garcia Erasmo Cadena 《Journal of Power and Energy Engineering》 2018年第11期12-22,共11页
Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give... Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give a “CO2-negative” power plant. BioCCS, the combination of CO2 Capture and Storage (CCS) with sustainable biomass conversion, is the only large-scale technology that can achieve net negative emissions. Combining, developing and demonstrating the oxy-combustion of high ratios of sustainable biomass with coal in flexible circulating fluidized bed (CFB) boiler will bring significant advances in the reduction of greenhouse gases (GHG) emissions. Areas addressed include possibilities for: biomass characterization;handling and feeding;co-firing ratios definition;CFB oxy-co-combustion studies;combustion performance;boiler flexibility in fuel and load;main emissions analysis;slaging, fouling and agglomeration;corrosion and erosion;and implications on plant operation and associated costs. The article will detail a comprehensive understanding on sustainable biomass supply, co-firing ratios and how direct biomass co-combustion under oxy-fuel conditions can be implemented. It seeks to push biomass co-combustion in future large-scale oxy-fuel CFB power stations to high thermal shares while enhancing the power plants’ operational flexibility, economic competitiveness and give operational procedures. There will be a need to consider the public acceptance of power production from coal and coal sustainability, by its combination with renewable sources of energy (biomass). 展开更多
关键词 CARBON capture Use and Storage (CCUS) BIOMASS combustion CARBON capture CFB Boiler
下载PDF
Fe-Si promoter for sulfur capture during coal briquette combustion
9
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第4期114-118,共5页
FeSipromoterforsulfurcaptureduringcoalbriquetecombustionLuXin,LinGuozhen,XiaoPeilin,ZhuangYahuiResearchCente... FeSipromoterforsulfurcaptureduringcoalbriquetecombustionLuXin,LinGuozhen,XiaoPeilin,ZhuangYahuiResearchCenterforEcoEnvironm... 展开更多
关键词 Fe-Si promoter for sulfur capture during coal briquette combustion Si
下载PDF
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions
10
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 Circulating fluidized bed Pure-oxygen combustion Gas-solid flow characteristics SIMULATION CO_(2)capture
下载PDF
Application of Fe_2O_3/Al_2O_3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion 被引量:11
11
作者 Fang He Hua Wang Yongnian Dai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期155-161,共7页
Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a m... Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels. The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3, together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system. 展开更多
关键词 chemical looping combustion iron oxide oxygen carrier CO2 capture
下载PDF
Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology 被引量:11
12
作者 Chuguang Zheng Zhaohui Liu +4 位作者 Jun Xiang Liqi Zhang Shihong Zhang Cong Luo Yongchun Zhao 《Engineering》 SCIE EI 2015年第1期139-149,共11页
Oxyfuel combustion with carbon capture and sequestration (CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development ... Oxyfuel combustion with carbon capture and sequestration (CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 aWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration (RD&D) roadmap for oxyfuel combustion in China has become a critical component of the global RD&D roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RD&D process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and next- generation oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion. 展开更多
关键词 oxyfuel combustion research development anddemonstration CO2 capture
下载PDF
Thermo economic evaluation of oxy fuel combustion cycle in Kazeroon power plant considering enhanced oil recovery revenues 被引量:1
13
作者 Ehsan Torabnejad Ramin Haghighi-Khoshkhoo Niloufar Sarabchi 《Journal of Central South University》 SCIE EI CAS 2014年第3期1025-1033,共9页
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran... Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models. 展开更多
关键词 oxy fuel combustion C02 capture combined cycle enhanced oil recovery NOx reduction
下载PDF
Experimental and numerical analysis of secondary disasters induced by oxygen rich combustion within a tunnel 被引量:2
14
作者 Cheng Caixia Sun Fuchun +2 位作者 Zhou Xinquan Niu Huiyong Liang De 《Mining Science and Technology》 EI CAS 2011年第6期897-901,共5页
Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire t... Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load. 展开更多
关键词 Numerical analysis combustion type oxygen-enriched combustion Secondary disasters
下载PDF
Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion
15
作者 Zhong Ma Guofu Liu +1 位作者 Hui Zhang Yonggang Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期98-105,共8页
As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination pro... As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination process to stabilize the physico-chemical properties,which presented significant influence on the redox performance of oxygen carriers.However,the effect of calcination temperature on the cyclic reaction performance of pyrite cinder has not been studied in detail.In this work,the effect of calcination temperature on the redox activity and attrition characteristic of pyrite cinder were studied in a fluidizedbed reactor using CH_(4) as fuel.A series of pyrite cinder samples were prepared by controlling the calcination temperature.The redox activity and attrition rate of the obtained pyrite cinder samples were investigated deeply.The results showed that calcination temperature displayed significant impact on the redox performance of pyrite cinder.Considering CH_(4) conversion(80%–85%)and attrition resistance,the pyrite cinder calcined at 1050℃ presented excellent redox properties.In the whole experiment process,the CO_(2) selectivity of the pyrite cinder samples were not affected by the calcination temperature and were still close to 100%.The results can provide reference for optimizing the calcination temperature of pyrite cinder during chemical looping process. 展开更多
关键词 Chemical looping combustion Pyrite cinder Calcination temperature CO_(2)capture Attrition Waste treatment
下载PDF
Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion 被引量:6
16
作者 Giorgia De Guido Matteo Compagnoni +1 位作者 Laura A. Pellegrini Ilenia Rossetti 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第2期315-325,共11页
Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global wanning as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced... Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global wanning as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced from the use of fossil fuels in electricity generation and industrial processes. In this respect, post-combustion systems have received great attention as a possible near-term CO2 capture technology that can be retrofitted to existing power plants. This capture technology is, however, energy-intensive and results in large equipment sizes because of the large volumes of the flue gas to be treated. To cope with the demerits of other CCS technologies, the chemical looping combustion (CLC) process has been recently considered as a solution for CO2 separation. It is typically referred to as a technology without energy penalty. Indeed, in CLC the fuel and the combustion air are never mixed and the gases from the oxidation of the fuel (i.e., CO2 and H2O) leave the system as a separate stream and can be separated by condensation of H2O without any loss of energy. The key issue for the CLC process is to find a suitable oxygen carrier, which provides the fuel with the activated oxygen needed for combustion. The aim of this work is to explore the feasibility of using perovskites as oxygen carriers in CLC and to consider the possible advantages with respect to the scrubbing process with amines, a mature post-combustion technology for CO2 separation. 展开更多
关键词 CO2 capture MONOETHANOLAMINE chemical looping combustion oxygen carder perovskites
原文传递
Review of post-combustion carbon dioxide capture technologies using activated carbon 被引量:11
17
作者 Alivia Mukherjee Jude A.Okolie +2 位作者 Amira Abdelrasoul Catherine Niu Ajay K.Dalai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第9期46-63,共18页
Carbon dioxide(CO2) is the largest anthropogenic greenhouse gas(GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO2 from the flue gas and they are pre... Carbon dioxide(CO2) is the largest anthropogenic greenhouse gas(GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes.Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO2 capture technologies with a focus on the use of activated carbon(AC) as an adsorbent for post-combustion anthropogenic CO2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO2 mitigation efforts along with the mathematical modeling of CO2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study. 展开更多
关键词 Post-combustion GREENHOUSE gas CARBON dioxide capture Activated CARBON Adsorption
原文传递
Application of membrane separation technology in postcombustion carbon dioxide capture process 被引量:6
18
作者 Mo LI Xiaobin JIANG Gaohong HE 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2014年第2期233-239,共7页
Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for C02 separation membrane, and then outlines the existing co... Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for C02 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix mem- brane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded 展开更多
关键词 membranes carbon dioxide capture separa-tion POLYMERS post-combustion
原文传递
Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO_(2)) capture technologies 被引量:4
19
作者 Chikezie Nwaoha Teeradet Supap +4 位作者 Raphael Idem Chintana Saiwan Paitoon Tontiwachwuthikul Mohammed JAL-Marri Abdelbaki Benamor 《Petroleum》 2017年第1期10-36,共27页
Chemical absorption using amine-based solvents have proven to be the most studied,as well as the most reliable and efficient technology for capturing carbon dioxide(CO_(2))from exhaust gas streams and synthesis gas in... Chemical absorption using amine-based solvents have proven to be the most studied,as well as the most reliable and efficient technology for capturing carbon dioxide(CO_(2))from exhaust gas streams and synthesis gas in all combustion and industrial processes.The application of single amine-based solvents especially the very reactive monoethanolamine(MEA)is associated with a parasitic energy demand for solvent regeneration.Since regeneration energy accounts for up to threeequarters of the plant operating cost,efforts in its reduction have prompted the idea of using blended amine solvents.This review paper highlights the success achieved in blending amine solvents and the recent and future technologies aimed at increasing the overall volumetric mass transfer coefficient,absorption rate,cyclic capacity and greatly minimizing both degradation and the energy for solvent regeneration.The importance of amine biodegradability(BOD)and low ecotoxicity as well as low amine volatility is also highlighted.Costs and energy penalty indices that influences the capital and operating costs of CO_(2) capture process was also highlighted.A new experimental method for simultaneously estimating amine cost,degradation rate,regeneration energy and reclaiming energy is also proposed in this review paper. 展开更多
关键词 Post-combustion Pre-combustion Oxy-fuel combustion CO_(2)capture Blended amines Regeneration energy Degradation Amine volatility Biodegradability Ecotoxicity Amine cost Reclaiming energy
原文传递
中国化学链燃烧技术研发进展与展望
20
作者 李振山 李维成 +5 位作者 刘海洋 段琦玮 王洋 李嘉晔 杨永嘉 蔡宁生 《中国电机工程学报》 EI CSCD 北大核心 2024年第18期7200-7220,I0010,共22页
化学链燃烧通过载氧体将空气中的氧传递给燃料、避免了高耗能的空分制氧,能够在较低能耗下实现CO_(2)的源头捕集,是最具潜力的固体燃料大规模碳减排技术之一。该文对中国化学链燃烧的研发进展进行系统的综述,介绍化学链燃烧技术在中国... 化学链燃烧通过载氧体将空气中的氧传递给燃料、避免了高耗能的空分制氧,能够在较低能耗下实现CO_(2)的源头捕集,是最具潜力的固体燃料大规模碳减排技术之一。该文对中国化学链燃烧的研发进展进行系统的综述,介绍化学链燃烧技术在中国的中试进展、工程示范部署及技术路线图,综述化学链燃烧在中国的基础研究现状,包括载氧体制备、载氧体氧化/还原反应动力学及模型、载氧体测试方法、双流化床等;并简要讨论化学链燃烧技术未来的发展趋势。 展开更多
关键词 碳捕集 化学链燃烧 载氧体 流化床 进展
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部