期刊文献+
共找到308篇文章
< 1 2 16 >
每页显示 20 50 100
Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation 被引量:8
1
作者 Jing-xian Wu Lu-yu Zhang +3 位作者 Yan-lin Chen Shan-shan Yu Yong Zhao Jing Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期481-489,共9页
Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neur... Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 ktM curcumin or post-treated with 5 pM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thi- oredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neu- roprotection after cerebral ischemia. 展开更多
关键词 nerve regeneration brain injury CURCUMIN ischemia/reperfusion injury OXIDATIVESTRESS primary cell culture cortical neurons oxygen-glucose deprivation PRETREATMENT POST-TREATMENT NSFC grant neural regeneration
下载PDF
Protective mechanisms of micro RNA-27a against oxygen-glucose deprivation-induced injuries in hippocampal neurons 被引量:7
2
作者 Qun Cai Ting Wang +1 位作者 Wen-jie Yang Xing Fen 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第8期1285-1292,共8页
Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression... Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression attenuates hypoxia- and ischemia-induced neuronal apoptosis by regulating FOXO1,an important transcription factor for regulating the oxidative stress response.miR-27 a mimic was transfected into hippocampal neurons to overexpress miR-27 a.Results showed increased hippocampal neuronal viability and decreased caspase-3 expression.The luciferase reporter gene system demonstrated that mi R-27 a directly binded to FOXO1 3′UTR in hippocampal neurons and inhibited FOXO1 expression,suggesting that FOXO1 was the target gene for mi R-27 a.These findings confirm that mi R-27 a protects hippocampal neurons against oxygen-glucose deprivation-induced injuries.The mechanism might be mediated by modulation of FOXO1 and apoptosis-related gene caspase-3 expression. 展开更多
关键词 nerve regeneration brain injury miR-27a hypoxic-ischemic hippocampal neurons oxygen-glucose deprivation cell survival apoptosis caspase 3 FOX01 luciferase reporter gene system NEUROPROTECTION neural regeneration
下载PDF
Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion 被引量:6
3
作者 Guo-Qian He Wen-Ming Xu +3 位作者 Hui-Juan Liao Chuan Jiang Chang-Qing Li Wei Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1977-1985,共9页
HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, includin... HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, including p53, Mcl-1, Cdc6 and N-myc, thereby playing a critical role in apoptosis and neurogenesis. However, the role of Huwe1 in brain ischemia and reperfusion injury remains unclear. Therefore, in this study, we investigated the role of Huwe1 in an in vitro model of ischemia and reperfusion injury. At 3 days in vitro, primary cortical neurons were transduced with a control or shRNA-Huwe1 lentiviral vector to silence expression of Huwe1. At 7 days in vitro, the cells were exposed to oxygen-glucose deprivation for 3 hours and reperfusion for 24 hours. To examine the role of the c-Jun N-terminal kinase(JNK)/p38 pathway, cortical neurons were pretreated with a JNK inhibitor(SP600125) or a p38 MAPK inhibitor(SB203508) for 30 minutes at 7 days in vitro, followed by ischemia and reperfusion. Neuronal apoptosis was assessed by TUNEL assay. Protein expression levels of JNK and p38 MAPK and of apoptosis-related proteins(p53, Gadd45 a, cleaved caspase-3, Bax and Bcl-2) were measured by western blot assay. Immunofluorescence labeling for cleaved caspase-3 was performed. We observed a significant increase in neuronal apoptosis and Huwe1 expression after ischemia and reperfusion. Treatment with the shRNA-Huwe1 lentiviral vector markedly decreased Huwe1 levels, and significantly decreased the number of TUNEL-positive cells after ischemia and reperfusion. The silencing vector also downregulated the pro-apoptotic proteins Bax and cleaved caspase-3, and upregulated the anti-apoptotic proteins Gadd45 a and Bcl-2. Silencing Huwe1 also significantly reduced p-JNK levels and increased p-p38 levels. Our findings show that downregulating Huwe1 affects the JNK and p38 MAPK signaling pathways as well as the expression of apoptosis-related genes to provide neuroprotection during ischemia and reperfusion. All animal experiments and procedures were approved by the Animal Ethics Committee of Sichuan University, China in January 2018(approval No. 2018013). 展开更多
关键词 nerve REGENERATION ischemic stroke oxygen-glucose deprivation and REPERFUSION ischemia/reperfusion cortical neuron ubiquitin proteasome system Huwe1 APOPTOSIS therapeutic targets CELL culture CELL death neural REGENERATION
下载PDF
Astragalus injection inhibits c-Jun N terminal kinase mRNA expression following oxygen-glucose deprivation and reintroduction in rat hippocampal neurons 被引量:6
4
作者 Dongqing Ye Weijuan Gao +2 位作者 Fengxia Yan Tao Qian Yali Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期879-884,共6页
BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have bee... BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis. 展开更多
关键词 oxygen-glucose deprivation and reintroduction Astragalus injection c-jun N-terminalkinase 3 mRNA hippocampal neuron
下载PDF
Proprotein convertase 1/3-mediated down-regulation of brain-derived neurotrophic factor in cortical neurons induced by oxygen-glucose deprivation 被引量:3
5
作者 Xiang-Yang Zhang Feng Liu +2 位作者 Yan Chen Wei-Chun Guo Zhao-Hui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1066-1070,共5页
Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3... Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3)has a key role in the cleavage of protein precursors that are directed to regulated secretory pathways;however,it is not clear whether PC1/3 mediates the change in BDNF levels caused by ischemia.To clarify the role of PC1/3 in BDNF maturation in ischemic cortical neurons,primary cortical neurons from fetal rats were cultured in a humidified environment of 95%N_2 and 5%CO_2 in a glucose-free Dulbecco's modified Eagle's medium at 37℃for3 hours.Enzyme-linked immunosorbent assays and western blotting showed that after oxygen-glucose deprivation,the secreted and intracellular levels of BDNF were significantly reduced and the intracellular level of PC1/3 was decreased.Transient transfection of cortical neurons with a PC1/3 overexpression plasmid followed by oxygen-glucose deprivation resulted in increased PC1/3 levels and increased BDNF levels.When levels of the BDNF precursor protein were reduced,the concentration of BDNF in the culture medium was increased.These results indicate that PC 1/3 cleavage of BDNF is critical for the conversion of pro-BDNF in rat cortical neurons during ischemia.The study was approved by the Animal Ethics Committee of Wuhan University School of Basic Medical Sciences. 展开更多
关键词 cortical neuron ischemia NEUROTROPHIN oxygen-glucose deprivation precursor protein of BRAIN-DERIVED NEUROTROPHIC factor PROPROTEIN CONVERTASE PROPROTEIN CONVERTASE 1/3
下载PDF
Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury 被引量:1
6
作者 Yan-bo Zhang Zheng-dong Guo +5 位作者 Mei-yi Li Si-jie Li Jing-zhong Niu Ming-feng Yang Xun-ming Ji Guo-wei Lv 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1471-1476,共6页
Hypoxic preconditioning activates endogenous mechanisms that protect against cerebral isch- emic and hypoxic injury. To better understand these protective mechanisms, adult rats were housed in a hypoxic environment (... Hypoxic preconditioning activates endogenous mechanisms that protect against cerebral isch- emic and hypoxic injury. To better understand these protective mechanisms, adult rats were housed in a hypoxic environment (8% 02/92% N2) for 3 hours, and then in a normal oxygen environment for 12 hours. Their cerebrospinal fluid was obtained to culture cortical neurons from newborn rats for 1 day, and then the neurons were exposed to oxygen-glucose deprivation for 1.5 hours. The cerebrospinal fluid from rats subjected to hypoxic preconditioning reduced oxygen-glucose deprivation-induced injury, increased survival rate, upregulated Bcl-2 expression and downregulated Bax expression in the cultured cortical neurons, compared with control. These results indicate that cerebrospinal fluid from rats given hypoxic preconditioning protects against oxygen-glucose deprivation-induced injury by affecting apoptosis-related protein expres- sion in neurons from newborn rats. 展开更多
关键词 nerve regeneration hypoxic preconditioning cerebrospinal fluich cerebral cortex oxygen-glucose deprivation neurons APOPTOSIS BCL-2/BAX neural regeneration
下载PDF
Protective effect of mesenchymal stem cell-derived exosomal treatment of hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury 被引量:1
7
作者 Xiao-fang Guo Shuang-shuang Gu +5 位作者 Jun Wang Hao Sun Yu-juan Zhang Peng-fei Yu Jin-song Zhang Lei Jiang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2022年第1期46-53,共8页
BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are mor... BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are more stable and highly conserved than MSCs.This study was conducted to investigate the therapeutic effects of MSC-derived exosomes(MSC-Exo)on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R),and to explore the underlying mechanisms.METHODS:Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment,with or without MSC-Exo treatment.Exosomal integration,cell viability,mitochondrial membrane potential,and generation of reactive oxygen species(ROS)were examined.Terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nickend labeling(TUNEL)staining was performed to detect neuronal apoptosis.Moreover,mitochondrial function-associated gene expression,Nrf2 translocation,and expression of downstream antioxidant proteins were determined.RESULTS:MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation(P<0.05).The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus(2.14±0.65 vs.5.48±1.09,P<0.01)and increased the intracellular expression of antioxidative proteins,including superoxide dismutase and glutathione peroxidase(17.18±0.97 vs.14.40±0.62,and 20.65±2.23 vs.16.44±2.05,respectively;P<0.05 for both).OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial functionassociated genes,such as PINK,DJ1,LRRK2,Mfn-1,Mfn-2,and OPA1.The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons.CONCLUSIONS:MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons.Therefore,MSCExo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury. 展开更多
关键词 Mesenchymal stem cells EXOSOMES oxygen-glucose deprivation/reperfusion Reactive oxygen species MITOCHONDRIA
下载PDF
Protective effect of icarisideⅡ on oxygen-glucose deprivation and reoxygenation-induced injury incerebral cortical neurons
8
作者 CHEN Na-na XU Fan +2 位作者 FENG Lin-ying GAO Jian-mei GONG Qi-hai 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期681-682,共2页
OBJECTIVE To explore the effect of icariside Ⅱ(ICS Ⅱ) on oxygen-glucose deprivation and reoxygenation(OGD/R)-induced injury in cerebral cortical neuronal cels.METHODS Primary cerebral cortical neuronal cells were de... OBJECTIVE To explore the effect of icariside Ⅱ(ICS Ⅱ) on oxygen-glucose deprivation and reoxygenation(OGD/R)-induced injury in cerebral cortical neuronal cels.METHODS Primary cerebral cortical neuronal cells were deprived of oxygen and glucose for 2 h to simulate ischemic stroke injury in vitro.The experiment was divided into 8 groups,which were control,control+ICSⅡ 25 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ(6.25,12.5,25 μmol·L^(-1)),OGD/R+3-methyladenine(3-MA) and OGD/R+Rapamycin(Rap).The protective effect of ICS Ⅱ were detected by MTT assay and lactate dehydrogenase(LDH),respectively.Autophagic flux and autophagy related proteins expressions were detected by using adenovirus harboring tf-LC3 and Western blotting,respectively.RESULTS Compared with OGD/R group,the cell viability treated with ICSⅡwas elevated in a concentration-dependent manner,and the leakage rate of LDH was lowed.Moreover,ICSⅡ not only suppressed OGD/R-induced autophagic flux,but also inhibited the increase of LC3-Ⅱ/LC3-Ⅰ ratio and Beclin 1 after OGD/R insulted.CONCLUSION ICS Ⅱ exerts protective effects on OGD/R-induced cerebral cortical neuronal cells through inhibiting excessive autophagy. 展开更多
关键词 icariside oxygen-glucose deprivation REOXYGENATION neurons AUTOPHAGY
下载PDF
Dynamic changes in proprotein convertase 2 activity in cortical neurons after ischemia/reperfusion and oxygen-glucose deprivation
9
作者 Shuqin Zhan An Zhou +1 位作者 Chelsea Piper Tao Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期83-89,共7页
In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cul... In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cultured rat cortical neurons was established. Proprotein convertase 2 activity gradually decreased in the ischemic cortex with increasing duration of reperfusion. In cultured rat cortical neurons, the number of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling-positive neurons significantly increased and proprotein convertase 2 activity also decreased gradually with increasing duration of oxygen-glucose deprivation. These experimental findings indicate that proprotein convertase 2 activity decreases in ischemic rat cortex after reperfusion, as well as in cultured rat cortical neurons after oxygen-glucose deprivation. These changes in enzyme activity may play an important pathological role in brain injury. 展开更多
关键词 neural regeneration brain injury proprotein convertase 2 cortex neuron cerebralischemia/reperfusion oxygen-glucose deprivation in vivo study in vitro study grants-supportedpaper photographs-containing paper NEUROREGENERATION
下载PDF
Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation 被引量:2
10
作者 Qiu-Yue Zhai Yuan-Hua Ye +4 位作者 Yu-Qian Ren Zhen-Hua Song Ke-Li Ge Bao-He Cheng Yun-Liang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期618-625,共8页
Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.... Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway. 展开更多
关键词 ferroptosis P53 SLC7A11 GPX4 human umbilical cord-mesenchymal stem cells neural stem cells neuregulin1β NEUROPROTECTION oxygen-glucose deprivation/reoxygenation PC12 cell
下载PDF
Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway
11
作者 Ming Zhou Xin-Qi Ma +4 位作者 Yi-Yu Xie Jia-Bei Zhou Xie-Lan Kuang Huang-Xuan Shen Chong-De Long 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1026-1033,共8页
AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the... AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the protective effect of ginsenoside Rg1.METHODS:The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro.Apoptosis,intracellular reactive oxygen species(ROS)levels and superoxide dismutase(SOD)levels were measured at different time points during the reperfusion injury process.The injury model was pretreated with graded concentrations of ginsenoside Rg1.Real-time polymerase chain reaction(PCR)was used to measure the expression levels of cytochrome C(cyt C)/B-cell lymphoma-2(Bcl2)/Bcl2 associated protein X(Bax),heme oxygenase-1(HO-1),caspase9,nuclear factor erythroid 2-related factor 2(nrf2),kelch-like ECH-associated protein 1(keap1)and other genes.Western blot was used to detect the expression of nrf2,phosphorylated nrf2(pnrf2)and keap1 protein levels.RESULTS:Compared to the untreated group,the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased(P<0.01).Additionally,the ROS content increased and SOD levels decreased significantly(P<0.01).In contrast,treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na_(2)S_(2)O_(4)treated group(P<0.01).Moreover,Rg1 reduced the levels of caspase3,caspase9,and cyt C,while increasing the Bcl2/Bax level.These differences were all statistically significant(P<0.05).Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment,however,Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na_(2)S_(2)O_(4)treated group(P<0.001).CONCLUSION:The OGD/R process is induced in 661W cells using Na_(2)S_(2)O_(4).Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway.These results suggest a potential protective effect of Rg1 against retinal I/R injury. 展开更多
关键词 oxygen-glucose deprivation/reoxygenation ginsenoside Rg1 oxidative stress phosphorylated nrf2
下载PDF
Effects of extracellular vesicles from mesenchymal stem cells on oxygen-glucose deprivation/reperfusioninduced neuronal injury 被引量:7
12
作者 Shuang-shuang Gu Xiu-wen Kang +4 位作者 Jun Wang Xiao-fang Guo Hao Sun Lei Jiang Jin-song Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2021年第1期61-67,共7页
BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-s... BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects ofBMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation andreperfusion (OGD/R) injury.METHODS: The primary cortical neuron OGD/R model was established to simulate the processof cerebral I/R in vitro. Based on this model, we examined whether the mechanism through whichBMSC-sEVs could rescue OGD/R-induced neuronal injury.RESULTS: BMSC-sEVs (20 μg/mL, 40 μg/mL) significantly decreased the reactive oxygenspecies (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathioneperoxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, asindicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminaldeoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positivecells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Westernblot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression ofphosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increaseof intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons.CONCLUSIONS: These results demonstrate that BMSC-sEVs have signifi cant neuroprotectiveeff ects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process. 展开更多
关键词 oxygen-glucose deprivation and reperfusion Cortical neurons Oxidative stress Small extracellular vesicles
下载PDF
Activin A prevents neuron-like PC12 cell apoptosis after oxygen-glucose deprivation 被引量:5
13
作者 Guihua Xu Jinting He +7 位作者 Hongliang Guo Chunli Mei Jiaoqi Wang Zhongshu Li Han Chen Jing Mang Hong Yang Zhongxin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期1016-1024,共9页
In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenou... In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway. 展开更多
关键词 neural regeneration brain injury biological factor oxygen-glucose deprivation Activin A ActivinA/Smads signaling pathway caspase-3 apoptosis grants-supported paper NEUROREGENERATION
下载PDF
Rac1 relieves neuronal injury induced by oxygen-glucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function
14
作者 Ping-Ping Xia Fan Zhang +5 位作者 Cheng Chen Zhi-Hua Wang Na Wang Long-Yan Li Qu-Lian Guo Zhi Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1937-1946,共10页
Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negat... Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negatively regulating the activity of Rac1,but it remains unclear whether miRNA-142-3p also participates in cerebral ischemia/reperfusion injury.In this study,a model of oxygen-glucose deprivation/re-oxygenation in primary cortical neurons was established and the neurons were transfected with miR-142-3p agomirs or miR-142-3p antagomirs.miR-142-3p expression was down-regulated in neurons when exposed to oxygen-glucose deprivation/re-oxygenation.Over-expression of miR-142-3p using its agomir remarkably promoted cell death and apoptosis induced by oxygen-glucose deprivation/re-oxygenation and improved mitochondrial biogenesis and function,including the expression of peroxisome proliferator-activated receptor-γcoactivator-1α,mitochondrial transcription factor A,and nuclear respiratory factor 1.However,the opposite effects were produced if miR-142-3p was inhibited.Luciferase reporter assays verified that Rac Family Small GTPase 1(Rac1)was a target gene of miR-142-3p.Over-expressed miR-142-3p inhibited NOX2 activity and expression of Rac1 and Rac1-GTPase(its activated form).miR-142-3p antagomirs had opposite effects after oxygen-glucose deprivation/re-oxygenation.Our results indicate that miR-142-3p down-regulates the expression and activation of Rac1,regulates mitochondrial biogenesis and function,and inhibits oxygen-glucose deprivation damage,thus exerting a neuroprotective effect.The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University,China(approval No.201703346)on March 7,2017. 展开更多
关键词 BIOGENESIS ischemia/reperfusion injury MICRORNAS miR-142-3p MITOCHONDRIA NEUROPROTECTION NOX2 oxygen-glucose deprivation RAC1
下载PDF
Adenosine A_(2A)receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult
15
作者 Elisabetta Coppi Federica Cherchi Alasdair J.Gibb 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期255-257,共3页
During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membra... During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia. 展开更多
关键词 adenosine A_(2A)receptors anoxic depolarization brain ischemia glutamate excitotoxicity medium spiny neurons oxygen and glucose deprivation
下载PDF
Overexpression of Sirt6 ameliorates sleep deprivation induced-cognitive impairment by modulating glutamatergic neuron function 被引量:1
16
作者 Jinpiao Zhu Chang Chen +15 位作者 Zhen Li Xiaodong Liu Jingang He Ziyue Zhao Mengying He Binbin Nie Zili Liu Yingying Chen Kuanpin Su Xiang Li Juxiang Chen Hongbing Xiang Fuqiang Xu Kangguang Lin Zongze Zhang Jie Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2449-2458,共10页
Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of... Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes.The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation(CSD).We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex(PrL).We then assessed cerebral functional connectivity(FC) using resting-state functional MRI,neuron/astrocyte metabolism using a metabolic kinetics analysis;dendritic spine densities using sparse-labeling;and miniature excitato ry postsynaptic currents(mEPSCs) and action potential(AP) firing rates using whole-cell patchclamp recordings.In addition,we evaluated cognition via a comprehensive set of behavioral tests.Compared with controls,Sirt6 was significantly decreased(P<0.05) in the PrL after CSD,accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus,piriform cortex,motor co rtex,somatosensory co rtex,olfactory tubercle,insular cortex,and cerebellum.Sirt6 ove rexpression reve rsed CSD-induced cognitive impairment and reduced FC.Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4and GABA2synthesis,which could be fully restored via forced Sirt6 expression.Furthermore,Sirt6 ove rexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons.These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network,neuronal glucose metabolism,and glutamatergic neurotransmission.Thus,Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases. 展开更多
关键词 chronic sleep deprivation cognitive impairment functional connectivity glutamatergic neurons metabolic kinetics neuronal-astrocytic glucose metabolism prelimbic cortex REM sleep Sirt6 synaptic function
下载PDF
Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis
17
作者 Ying-Zhi Li Ai-Ping Wu +2 位作者 Dan-Dan Wang Pan-Pan Yang Bin Sheng 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第2期70-79,共10页
Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 ce... Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 cells into neurons. The effects of salidroside on survival, apoptosis, inflammatory response, and oxidative stress of neurons undergoing OGD were evaluated. Using precursor cells as controls, the effect of salidroside on the differentiation progression of OGDtreated cells was evaluated. In addition, the effect of erastin, a ferroptosis inducer, on NT2 cells was examined to investigate the underlying mechanisms of neuroprotective action of salidroside.Results: Salidroside alleviated the effects of OGD on neuronal survival, apoptosis, inflammation, and oxidative stress, and promoted NT2 cell differentiation. Moreover, salidroside prevented ferroptosis of OGD-treated cells, which was abolished following erastin treatment, indicating that ferroptosis mediated the regulatory pathway of salidroside.Conclusions: Salidroside attenuates OGD-induced neuronal injury by inhibiting ferroptosis and promotes neuronal differentiation. 展开更多
关键词 SALIDROSIDE Rhodiola rosea Ferroptosis Oxygen and glucose deprivation neuronal differentiation Ischemic stroke
下载PDF
IcarisideⅡ alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 celloxidative injury by activating Nrf2 / SIRT3signaling pathway 被引量:12
18
作者 FENG Lin-ying GAO Jian-mei +2 位作者 LIU Yuan-gui SHI Jing-shan GONG Qi-hai 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期667-668,共2页
OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy... OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway. 展开更多
关键词 icariside oxygen-glucose deprivation REOXYGENATION oxidative injury apoptosis nuclear factor ERYTHROID 2-related factors SILENT information regulator 3
下载PDF
Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion 被引量:13
19
作者 Zuo-Yan Sun Fu-Jiang Wang +6 位作者 Hong Guo Lu Chen Li-Juan Chai Rui-Lin Li Li-Min Hu Hong Wang Shao-Xia Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期783-793,共11页
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect... Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway. 展开更多
关键词 nerve REGENERATION SHUXUETONG injection brain MICROVASCULAR endothelial cells oxygen-glucose deprivation/reperfusion tight junction proteins mitochondrial function inflammatory factors blood-brain barrier neuroprotection neural REGENERATION
下载PDF
Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation 被引量:5
20
作者 Tao Pan Qiu-Jiao Zhu +5 位作者 Li-Xiao Xu Xin Ding Jian-Qin Li Bin Sun Jun Hua Xing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第11期2154-2161,共8页
Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression... Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma(PC12) cells injured by oxygen-glucose deprivation(OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2(CXCL2), NACHT, LRR, and PYD domain–containing protein 3(NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation. 展开更多
关键词 apoptosis calcium caspase-1 NLRP3 mitochondrial IMPAIRMENT oxidative stress oxygen-glucose deprivation PC12 shRNA TRPM2
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部