期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biogenic volatile organic compound emissions from leaves and fruits of apple and peach trees during fruit development 被引量:3
1
作者 Shuangjiang Li Xiangyang Yuan +4 位作者 Yan Xu Zhengzhen Li Zhaozhong Feng Xu Yue Elena Paoletti 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第10期152-163,共12页
Biogenic volatile organic compounds(BVOCs)are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity.To date,however,research on BVOCs in agroecosystems,parti... Biogenic volatile organic compounds(BVOCs)are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity.To date,however,research on BVOCs in agroecosystems,particularly fruit trees,remains scarce despite their large cultivation area and economic interest.BVOC emissions from different organs(leaf or fruit)of apple and peach trees were investigated throughout the stages of fruit development(FS,fruit swelling;FC,fruit coloration;FM,fruit maturity;and FP,fruit postharvest)using a proton-transfer-reaction mass spectrometer.Results indicated that methanol was the most abundant compound emitted by the leaf(apple tree leaf 492.5±47.9 ng/(g·hr),peach tree leaf 938.8±154.5 ng/(g·hr)),followed by acetic acid and green leaf volatiles.Beside the above three compounds,acetaldehyde had an important contribution to the emissions from the fruit.Overall,the total BVOCs(sum of eight compounds studied in this paper)emitted by both leaf and fruit gradually decreased along the fruit development,although the effect was significant only for the leaf.The leaf(2020.8±258.8 ng/(g·hr))was a stronger BVOC emitter than the fruit(146.0±45.7 ng/(g·hr))(P=0.006),and there were no significant differences in total BVOC emission rates between apple and peach trees.These findings contribute to our understanding on BVOC emissions from different plant organs and provide important insights into the variation of BVOC emissions across different fruit developmental stages. 展开更多
关键词 Biogenic volatile organic compounds(Bvocs) oxygenated vocs(Ovocs) Fruit trees
原文传递
Remarkable promotion effect of trace sulfation on OMS-2nanorod catalysts for the catalytic combustion of ethanol 被引量:9
2
作者 Jie Zhang Changbin Zhang Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期69-75,共7页
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentratio... OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples. 展开更多
关键词 Manganese oxide Octahedral molecular sieves(OMS-2) Catalytic oxidation vocs Lattice oxygen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部