期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Reaction behavior of trace oxygen during combustion of falling FeSi75 powder in a nitrogen flow 被引量:1
1
作者 Bin Li Jun-hong Chen +3 位作者 Peng Jiang Ming-wei Yan Jia-lin Sun Yong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期959-965,共7页
To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si;N;sample was heat-treated to remove SiO;. The samp... To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si;N;sample was heat-treated to remove SiO;. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO;was investigated. The results show that SiO;in the Fe-Si;N;is mainly located on the surface or around the Si;N;particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N;stream, trace oxygen in the N;stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si;N;particles to form SiO;. At the reaction zone, the oxidation of Si;N;particles decreased the oxygen partial pressure in the N;stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO;; by virtue of the SiO;film developed on the surface, the Si;N;particles adhered to each other and formed dense areas in the material. 展开更多
关键词 silicon nitride combustion synthesis oxygen atmosphere
下载PDF
Cycle performance of Cu-based oxygen carrier based on a chemical-looping combustion process 被引量:1
2
作者 Xiaoming Zheng Lixin Che +1 位作者 Yanqiong Hao Qingquan Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期101-109,共9页
The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC... The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC process characterized with an added methane steam reforming step. The Cu/SiO2 exhibited high redox reactivity in the initial cycles, while the performance degraded with cycle number. Through characterization of the degraded Cu/SiO2, the performance degradation was mainly caused by the secondary particles' fragmentation and the fine particles' local agglomeration, which worsened the distribution and diffusion of the reactive gases in the packed bed. A regeneration method of the degraded OC based on re-granulation has been proposed, and its mechanism has been illustrated. With this method, the performance of the degraded OC through 420 redox cycles was recovered to a level close to the initial one. 展开更多
关键词 Chemical-looping combustion Cu-based oxygen carrier Cycle life
下载PDF
Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity 被引量:1
3
作者 穆海宝 喻琳 +3 位作者 李平 汤成龙 王金华 张冠军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第12期1019-1026,共8页
Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of... Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process,and several properties of combustion are considered.First,in the presence or absence of plasma discharge,physical appearance of the flame is examined and analyzed.Second,the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method.Finally,the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process.We also discuss the possible kinetic regime of plasma-assisted combustion.Experimental results imply that plasma discharge applied to the premixed CH_4/O_2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10,with the flame speed improved by 17%to 35%.It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer,especially at a low equivalence ratio. 展开更多
关键词 combustion flame Oxygen equivalence appearance Velocity scenarios burning camera hydrocarbon
下载PDF
Heat Transfer and Energy Analysis of a Pusher Type Reheating Furnace Using Oxygen Enhanced Air for Combustion 被引量:8
4
作者 Hamzeh Jafar Karimi Mohammad Hassan Saidi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第4期12-17,共6页
Oxy-fuel firing is more energy efficient and environmental friendly than conventional air-fuel firing and its application to reheating furnaces has begun since 1990s. A computational method was presented to predict th... Oxy-fuel firing is more energy efficient and environmental friendly than conventional air-fuel firing and its application to reheating furnaces has begun since 1990s. A computational method was presented to predict the steady heat transfer to the billets and temperature distribution in a continuous pusher type reheating furnace in which combustion air was enhanced by oxygen. Radiation heat flux calculated from the radiation heat exchange within the furnace was modeled using the FVM considering the effects of furnace walls and billets. Energy consumption per ton of steel, production rate and thermal efficiency of furnace, and trend of NOx emission in various levels of oxygen enrichment were investigated by comparing with baseline furnace (21% of O2 in air). The results showed that the best range of oxygen enrichments was between 21% and 45% by volume, as the higher slope of flame temperature and production increase occur in this range. The reduction of energy consumption can be obtained up to 18% per ton of steel for oxygen enrichment of 60 % by volume. 展开更多
关键词 oxygen enhanced combustion reheating furnace energy consumption
原文传递
Three-dimensional numerical simulation of flow and splash behavior in an oxygen coal combustion melting and separating furnace 被引量:1
5
作者 Kai Zhao Yao-zong Shen +6 位作者 Zheng Kong Qiao-rong Zhang Yu-zhu Zhang Yan Shi Chang-liang Zhen Xue-feng Shi Xing-hua Zhang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第8期965-977,共13页
The change of bubbles and the position of the tuyere in an oxygen coal combustion melting and separating furnace affect the flow and splash behavior of the molten pool.To analyze this problem further,a three-dimension... The change of bubbles and the position of the tuyere in an oxygen coal combustion melting and separating furnace affect the flow and splash behavior of the molten pool.To analyze this problem further,a three-dimensional numerical simulation method was used to explore the behavior and change of the flow field inside the molten pool during double-row tuyere injection.In addition,the arrangement of the tuyere was changed for a more detailed understanding of the internal phase distribution and splashing in a molten pool.The results indicated that under three-dimensional numerical simulation conditions,bubbles rise after leaving the tuyere and break on the surface of the molten pool,which results in certain fluctuations in the nearby melt.During the injection process of the tuyere,the meteorological accumulation in the middle part of the molten pool formed part of the foam slag because of the influence of surface tension.When the layout of the upper and lower exhaust tuyeres was changed from staggered to symmetrical,or when the spacing of the upper and lower exhaust tuyeres changed,it had an effect on the phase distribution and splash behavior. 展开更多
关键词 Oxygen coal combustion melting and separating furnace Exhaust tuyere Phase distribution SPLASH Numerical simulation
原文传递
Chemical looping combustion: A new low-dioxin energy conversion technology 被引量:6
6
作者 Xiuning Hua Wei Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期135-145,共11页
Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to ... Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. 展开更多
关键词 Chemical looping combustion Solid waste Pyrolysis Dioxin Deacon reaction Oxygen carrier
原文传递
Effects of Optimized Operating Parameters on Combustion Characteristics and NO_(x)Emissions of a Burner based on Orthogonal Analysis
7
作者 XU Qian AKKURT Nevzat +7 位作者 YANG Gang ZHU Lidong SHI Kejian WANG Kang ZOU Zhenwei LIU Zhihui WANG Jiulong DU Zhiwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1212-1223,共12页
To optimize the structure of the burner,improve the combustion performance,and reduce the emission of NO_(x),a self-circulating low NO_(x)combustion technology was used to design a new type of flue gas self-circulatin... To optimize the structure of the burner,improve the combustion performance,and reduce the emission of NO_(x),a self-circulating low NO_(x)combustion technology was used to design a new type of flue gas self-circulating low NO_(x)burner.Based on previous research on the numerical model of combustion and the composition of mixed gas on combustion and NO_(x)emissions,the effect of various factors on the ejection coefficient of the flue gas self-circulating structure was analyzed using the orthogonal test method,and the burner operating parameters,such as preheating temperature and excess air coefficient,were deeply studied through the three-dimensional finite element numerical model in this paper.The results show that the diameter ratio of the nozzle and the length of the cylindrical section of the flue gas self-circulating structure have great influence on its ejection and mixing ability.The optimal ejection coefficient was 0.4829.Overall,the amount of NO_(x)emissions greatly increased from 6.23×10^(-6)(volume fraction)at the preheating temperature 973 K to 3.5×10^(-3)at preheating temperature 1573 K.When the excess air coefficient decreased from 1.2 to 1,the maximum combustion temperature decreased from 2036.3 K to 1954.22 K,and the NO_(x)emissions decreased from 352.29×10^(-6)to 159.73×10^(-6). 展开更多
关键词 preheating temperature excess air coefficient self-circulating flue gas low oxygen combustion low-NO_(x)emissions
原文传递
The Study on the Heat Transfer Characteristics of Oxygen Fuel Combustion Boiler
8
作者 WU Haibo LIU Zhaohui LIAO Haiyan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第5期470-475,共6页
According to 350 MW and 600 MW boilers,under oxygen fuel condition,through the reasonable control of the primary and secondary flow and the correct option and revision of mathematical model,the temperature distributio... According to 350 MW and 600 MW boilers,under oxygen fuel condition,through the reasonable control of the primary and secondary flow and the correct option and revision of mathematical model,the temperature distribution,heat flux distribution and absorption heat distribution,etc.was obtained which compared with those under air condition.Through calculation,it is obtained that the primary and secondary flow mixed well,good tangentially fired combustion in furnace was formed,the temperature under air condition obviously higher than the temperature under O26 condition.The adiabatic flame temperature of wet cycle was slightly higher than that of dry cycle.The maximum heat load appeared on the waterwall around the burner area.The heat load gradually decreased along the furnace height up and down in burner area.The heat absorption capacity of the furnace under O26 was lower than that under the air condition.The heat absorption capacity of the platen heating surface under 026 was equal to that under air condition.And the heat absorbing capacity of waterwall under O26 was about 7%~12% less than that under air condition. 展开更多
关键词 Large-scale boiler Oxygen fuel combustion Heat transfer characteristics Numerical calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部