Polymerase chain reaction-denaturing gradient gel electrophoresis (pCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under ...Polymerase chain reaction-denaturing gradient gel electrophoresis (pCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg·L^-1, indicating that low DO may drive N2O generation. PCRDGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg·L^-1), Flavobacterium urocaniciphilum might playa role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg·L^-1) for nitrification, it reduced NO2^--N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction ofN2O through regulation of DO levels.展开更多
基金Acknowledgements This work is financially supported by the Doctoral Program Foundation of Chinese Higher Education Institutions (20130191110040), Ministry of Education, and the National Natural Science Foundation of China (Grant Nos. 51278508 and 51609024).
文摘Polymerase chain reaction-denaturing gradient gel electrophoresis (pCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg·L^-1, indicating that low DO may drive N2O generation. PCRDGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg·L^-1), Flavobacterium urocaniciphilum might playa role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg·L^-1) for nitrification, it reduced NO2^--N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction ofN2O through regulation of DO levels.