Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON n...Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.展开更多
Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with ...Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size dist...Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N-2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).展开更多
Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance ...Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.展开更多
Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitr...Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitrogen sorption measurement,X-ray powder diffraction(XRD),high-resolution transmission electron microscopy(HRTEM),energy dispersive analysis of X-rays(EDAX)and CNH element analysis.The investigation resnlts show that superfine nanoparticles of vanadium molybderum oxynitrides exist in the channels of MCM-41.展开更多
Silicon oxynitride was added in shaped Al_2O_3-SiC-C refractory material to improve the slag resistance in this paper.Optimum adding quantity of silicon oxynitride powder was also studied. The results show that the sl...Silicon oxynitride was added in shaped Al_2O_3-SiC-C refractory material to improve the slag resistance in this paper.Optimum adding quantity of silicon oxynitride powder was also studied. The results show that the slag resistance of Al_2O_3-SiC-C shaped refractory is improved when 2% or 3% Si_2N_2O is added. A reasonable amount of Si_2N_2O added into Al_2O_3-Si C-C shaped refractory can produce silicon oxide into the slag, which can improve the viscosity of slag and prevent the slag erosion and penetration.展开更多
In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. Th...In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In SiOxNy films, an intense single PL peak at 590 nm is observed. Furthermore, with the increase of the N content in the SiOxNy films, the intensity of the PL peak at 590 nm increases a lot. The PL peak of 590 nm is suggested to originate from N-related defects.展开更多
As promising electrode materials,transition metal oxides have attracted considerable attention owing to their excellent performance in electrochemical energy storage.However,their poor conductivity and fragile structu...As promising electrode materials,transition metal oxides have attracted considerable attention owing to their excellent performance in electrochemical energy storage.However,their poor conductivity and fragile structure limit their practical application.In this study,a binder-free nickel oxide/oxynitride network(NiON WS)bifunctional electrodes with cation multivalent states that exhibit high energy storage performance were synthesized for the first time.The massive active sites,high specific surface areas,and multiple cation valence states of NiON WS were advantageous for electrochemical redox reaction during its application in supercapacitors(1283.5 mF cm^(-2))and lithium-ion batteries(1345.0 mA h g^(-1)).Particularly,the NiON WS based flexible asymmetric SCs exhibit excellent capacitance and energy densities.First-principle calculations were employed to study the mechanism of the electrochemical performance improvement of NiON WS.This study demonstrates the potential of transition metal oxides electrode with high capacity and activity for electrochemical energy storage and conversion.展开更多
基金supported by the Starting Foundation of ShanghaiTech Universitythe Double First-Class Initiative Fund of ShanghaiTech Universitythe National Natural Science Foundation of China (21972092)
文摘Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.
文摘Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
文摘Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N-2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).
基金supports provided by the National Natural Science Foundation of China(U21A2077,21971145,21871164)the Taishan Scholar Project Foundation of Shandong Province(ts20190908)+2 种基金the Natural Science Foundation of Shandong Province(ZR2021ZD05,ZR2019MB024)Young Scholars Program of Shandong University(2017WLJH15)and Anhui Kemi Machinery Technology Co.,Ltd.for providing a Teflon-lined stainless steel autoclave.
文摘Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.
文摘Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitrogen sorption measurement,X-ray powder diffraction(XRD),high-resolution transmission electron microscopy(HRTEM),energy dispersive analysis of X-rays(EDAX)and CNH element analysis.The investigation resnlts show that superfine nanoparticles of vanadium molybderum oxynitrides exist in the channels of MCM-41.
文摘Silicon oxynitride was added in shaped Al_2O_3-SiC-C refractory material to improve the slag resistance in this paper.Optimum adding quantity of silicon oxynitride powder was also studied. The results show that the slag resistance of Al_2O_3-SiC-C shaped refractory is improved when 2% or 3% Si_2N_2O is added. A reasonable amount of Si_2N_2O added into Al_2O_3-Si C-C shaped refractory can produce silicon oxide into the slag, which can improve the viscosity of slag and prevent the slag erosion and penetration.
基金The project supported by the Nature Science Foundation of University of Jiangsu Province(No. 03KJB140116 )
文摘In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In SiOxNy films, an intense single PL peak at 590 nm is observed. Furthermore, with the increase of the N content in the SiOxNy films, the intensity of the PL peak at 590 nm increases a lot. The PL peak of 590 nm is suggested to originate from N-related defects.
基金supported by the National Natural Science Foundation of China,China(Contract 51872164)Natural Science Foundation of Shandong Province,China(Contract ZR2018MEM013)+1 种基金China Postdoctoral Science Foundation,China(Contract 2019TQ0172,2019M662349)Shandong Provincial Key Research and Development Program,China(Contract 2019GGX103010)。
文摘As promising electrode materials,transition metal oxides have attracted considerable attention owing to their excellent performance in electrochemical energy storage.However,their poor conductivity and fragile structure limit their practical application.In this study,a binder-free nickel oxide/oxynitride network(NiON WS)bifunctional electrodes with cation multivalent states that exhibit high energy storage performance were synthesized for the first time.The massive active sites,high specific surface areas,and multiple cation valence states of NiON WS were advantageous for electrochemical redox reaction during its application in supercapacitors(1283.5 mF cm^(-2))and lithium-ion batteries(1345.0 mA h g^(-1)).Particularly,the NiON WS based flexible asymmetric SCs exhibit excellent capacitance and energy densities.First-principle calculations were employed to study the mechanism of the electrochemical performance improvement of NiON WS.This study demonstrates the potential of transition metal oxides electrode with high capacity and activity for electrochemical energy storage and conversion.