期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Synthesis and Characterization of Vanadium Molybdenum Oxynitrides Nanoparticles in the Channels of MCM-41
1
作者 张存满 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第4期29-31,42,共4页
Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitr... Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitrogen sorption measurement,X-ray powder diffraction(XRD),high-resolution transmission electron microscopy(HRTEM),energy dispersive analysis of X-rays(EDAX)and CNH element analysis.The investigation resnlts show that superfine nanoparticles of vanadium molybderum oxynitrides exist in the channels of MCM-41. 展开更多
关键词 NANOPARTICLES vanadium molybdenum oxynitrides MCM-41 NITRIDATION
下载PDF
NH_(4)Cl-assisted synthesis of TaON nanoparticle applied to photocatalytic hydrogen and oxygen evolution from water
2
作者 Yao Xu Kaiwei Liu +5 位作者 Jifang Zhang Boyang Zhang Jiaming Zhang Ke Shi Haifeng Wang Guijun Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期541-550,共10页
Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON n... Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting. 展开更多
关键词 TAON Oxynitride synthesis PHOTOCATALYST Water splitting Hydrogen Z-scheme
下载PDF
Enhanced polysulfide redox kinetics by niobium oxynitrides via insitu adsorptive and catalytic effect in wide temperature range
3
作者 Benben Wei Chaoqun Shang +4 位作者 Qiao Cu Le Hu Xuelian Fu Guofu Zhou Xin Wang 《Nano Research》 SCIE EI CSCD 2022年第7期6200-6207,共8页
The development of Li-S batteries(LSBs)is hindered by the low utilization of S species and sluggish redox reaction kinetics.Polar metal oxides always possess high adsorption to polar S species,while conductive metal n... The development of Li-S batteries(LSBs)is hindered by the low utilization of S species and sluggish redox reaction kinetics.Polar metal oxides always possess high adsorption to polar S species,while conductive metal nitrides show fast electron transport and ensure fast redox reaction of S species.The combination merits of metal oxides and metal nitrides in one provide an effective strategy to improve the electrochemical performance of LSBs.In this work,defect design of niobium oxynitrides highly dispersed on graphene(NbON-G)is evaluated as effective trapper and catalyst for S species.Owning to the effective structural merits including enriched active sites,alleviated volume variation,defect modulated electronic property,and in-situ chemisorption and catalytic conversion of soluble lithium polysulfides(LiPSs),the LSBs with NbON-G modified separator show remarkably enhanced performance compared to NbN-G and Nb_(2)O_(5)-G.Surprisingly,even at low temperature of−40°C,the LSBs with NbON-G can operate for 1,000 cycles with 0.04%capacity decay per cycle(Rate:2 C). 展开更多
关键词 lithium polysulfides Li-S batteries niobium oxynitrides catalyst low temperature
原文传递
All-Solid-State Thin-Film Lithium-Sulfur Batteries 被引量:3
4
作者 Renming Deng Bingyuan Ke +5 位作者 Yonghui Xie Shoulin Cheng Congcong Zhang Hong Zhang Bingan Lu Xinghui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期326-338,共13页
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th... Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries. 展开更多
关键词 All-solid-state thin-film batteries Li-S batteries Vertical graphene nanosheets Lithium phosphorous oxynitride Li2S
下载PDF
New Rare-Earth Containing (Sr_(1-y)Eu_y)_2Al_2Si_(10)N_(14)O_4 Phosphors for Light-Emitting Diodes 被引量:5
5
作者 刘宇桓 刘如熹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期392-395,共4页
Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phospho... Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phosphors. Here we reported the sialon s-phase of (Sr,Eu)2A12Si10N14O4. Eu^2+ activator ions that were substituted for the strontium site represented a new type of yeUow-green phosphor that could be excited by blue LEDs used for application in the fabrication of white LEDs. 展开更多
关键词 (St1- y EUy )2A12 Si10N14O4 oxynitrides light-emitting diodes rare earths
下载PDF
In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2 被引量:3
6
作者 Shang-hao Tong Yong Li +3 位作者 Ming-wei Yan Peng Jiang Jia-jia Ma Dan-dan Yue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1061-1066,共6页
The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction ... The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures. 展开更多
关键词 COMPOSITES metal aluminum nitrogen atmosphere magnesium aluminum oxynitride reaction mechanism
下载PDF
Microwave Assisted Sintering and Photoluminescence Properties of BaaSi6OleNe:Eu^2+ Green Phosphors 被引量:3
7
作者 HAN Bin WANG Yi-Fei +1 位作者 LIU Qian HUANG Qing 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第3期330-336,共7页
Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature hi... Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity. 展开更多
关键词 Ba3S16012N2:Eu^2+ PHOSPHORS OXYNITRIDE MICROWAVE assisted SINTERING PHOTOLUMINESCENCE
下载PDF
Molybdenum Oxynitride Atomic Nanoclusters Bonded in Nanosheets of N-Doped Carbon Hierarchical Microspheres for Efficient Sodium Storage 被引量:2
8
作者 Xiaona Pan Baojuan Xi +5 位作者 Huibing Lu Zhengchunyu Zhang Xuguang An Jie Liu Jinkui Feng Shenglin Xiong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期148-163,共16页
Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance ... Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries. 展开更多
关键词 Molybdenum oxynitride Atomic nanocluster Hollow microspheres Sodium-ion batteries
下载PDF
Synthesis of perovskite BaTaO_(2)N with low defect by Zn doping for boosted photocatalytic water reduction 被引量:1
9
作者 Yunfeng Bao Hai Zou +2 位作者 Nengcong Yang Gao Li Fuxiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期358-363,I0009,共7页
Perovskite BaTaO_(2) N(BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the challenge of... Perovskite BaTaO_(2) N(BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the challenge of high defect density causing decreased charge separation as well as photocatalytic activity.In this work,we develop a simple zinc doping strategy to greatly suppress its defect density and promote its water reduction performance.It is found that the defect formation on the nitrided Ba(Zn_(1/3-x)Ta_(2/3))O_(3-y)N_z(denoted as BZTON hereafter) will be greatly inhibited when the Zn-doped Ba(Zn_(1/3)Ta_(2/3))O_(3)(BZTO) oxide is used as the nitridation precursor.The structural characterizations and discussion demonstrate that the effective inhibition of Ta^(5+)into Ta^(4+)defects in BZTON mainly results from the easy reduction of zinc ions into metal and further the evaporation of zinc metal under the thermal ammonia flow.Interestingly,this simply doping methodology can be easily extended into the synthesis of SrTaO_(2) N(STON) with extremely low defect density,demonstrating its generality.Benefiting from the successful control to the defect density,the as-obtained BZTON photocatalyst exhibits remarkably promoted charge separation as well as water reduction activity to produce hydrogen with respect to the pristine BTON.Our work may provide an alternative avenue to prepare oxynitride semiconductors with reduced defect density for promoted solar energy conversion. 展开更多
关键词 OXYNITRIDE PHOTOCATALYST Water splitting Defect density Zinc doping
下载PDF
Synthesis and Characterization of Mesoporous Silicon Oxynitride MCM-41 with High Nitrogen Content 被引量:1
10
作者 张存满 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期32-34,共3页
Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size dist... Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N-2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous). 展开更多
关键词 MESOPOROUS silicon oxynitride MCM-41 high nitrogen content
下载PDF
Effect of the Fourth Element on Bonding of Silicon Nitride Ceramics with Y_2O_3-Al_2O_3-SiO_2 Glass Solders 被引量:1
11
作者 周飞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第2期90-96,共7页
Bonding of Si 3N 4 ceramic was performed with Y 2O 3 Al 2O 3 SiO 2(YAS) X glass solders,which were mixed with TiO 2 (YT) and Si 3N 4 (YN), respectively. The effects of bonding conditions and interfacial r... Bonding of Si 3N 4 ceramic was performed with Y 2O 3 Al 2O 3 SiO 2(YAS) X glass solders,which were mixed with TiO 2 (YT) and Si 3N 4 (YN), respectively. The effects of bonding conditions and interfacial reaction on the joint strength were studied. The joint strength in different bonding conditions was measured by four point bending tests. The interfacial microstructures were observed and analyzed by SEM, EPMA and XRD. It is shown that with the increase of bonding temperature and holding time, the joint strength increases reaching a peak, and then decreases. When TiO 2 is put into YAS solder,the bonding interface with Si 3N 4/(Y Sialon glass+TiN)/TiN/Y Sialon glass is formed. When YAS solder is mixed with Si 3N 4 powder, the interfacial residual thermal stress may be decreased, and then the joint strength is enhanced. According to microanalyses, the bonding strength is related to interfacial reaction. 展开更多
关键词 rare earths Si 3N 4 ceramic YTTRIA titanium oxide oxynitride glass BONDING
下载PDF
Silicon Nitride Etch via Oxidation Reaction in Fluorocarbon/Oxygen Plasma:A First-Principle Study 被引量:1
12
作者 Yu-Hao Tsai Du Zhang Mingmei Wang 《Journal of Microelectronic Manufacturing》 2018年第1期2-10,共9页
Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed fi... Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed first-principle studies on the etching mechanism of Si3N4 in fluorocarbon/oxygen plasma.The feasibility of using fluorocarbon/oxygen plasma to etch Si3N4 while attaining close E/R to SiO2 through the complementary nitride to oxynitiride(SiOxNy)transformation has been identified.Such transformation involves two stages:N atom elimination and Si-O bond formation.By modeling the essential chemical reactions on the Si3N4 surface,we shed light upon the underlying mechanisms behind both stages.We simulated the N-elimination reactions involving the formation and desorption of NO and FNO molecules as well as the substitution with F atoms.We found that N atoms can be eliminated by forming NO molecules,especially with the assistance of F-substitution in Si-N bond breaking.The predicted O-additive energies indicates that forming SiOxNy structure after N-elimination is possible.Following that,the dependency of chemistries favoring either high E/R or active SiOxNy formation on the fluorocarbon/oxygen ratio was discussed.We hope that the work will build a foundation for future studies on pursuing all-in-one ON etch process via the surface modifications. 展开更多
关键词 3D-NAND oxide NITRIDE OXYNITRIDE plasma ETCH FIRST-PRINCIPLE
下载PDF
Local oxynitriding of AZ31 magnesium alloy by atmospheric-pressure plasma treatment at room temperature
13
作者 Kenta Nakazawa Tatsuki Ohashi +1 位作者 Shotaro Saiki Shoichi Kikuchi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1878-1886,共9页
A surface-hardening treatment for AZ31 magnesium alloy using an atmospheric-pressure plasma jet(APPJ)at room temperature was developed.Magnesium is a potential engineering material because it is lightweight;however,ma... A surface-hardening treatment for AZ31 magnesium alloy using an atmospheric-pressure plasma jet(APPJ)at room temperature was developed.Magnesium is a potential engineering material because it is lightweight;however,magnesium alloys are difficult to heat-treat because of their low flaming temperature.Magnesium alloy specimens were irradiated with a localized atmospheric-pressure plasma jet generated by dielectric-barrier discharge for 180 s in air.The APPJ excited oxygen and nitrogen molecules in the ambient air,resulting in the formation of an oxynitrided layer;oxygen and nitrogen diffusion layer,on the surface of the magnesium alloy.The hardness and elemental distribution for the treated surface were examined.The top surface of the APPJ-treated magnesium alloy achieved a maximum hardness of 108 HV,which was~1.7 times greater than that of the untreated surface.Elemental analysis using an electron-probe microanalyzer revealed strong oxygen and nitrogen signals corresponding to the hardened region of the magnesium alloy,meaning that the hardness increased as a result of the formation of the oxynitrided layer.The proposed APPJ treatment is a promising approach for locally hardening magnesium alloys without using a heat treatment. 展开更多
关键词 Magnesium alloy Oxynitriding Atmospheric-pressure plasma jet HARDNESS Surface modification DIFFUSION
下载PDF
Valence modulated nickel oxynitride network as integrated bifunctional electrodes for enhanced energy storage
14
作者 Shouzhi Wang Hengshuai Li +4 位作者 Weidong He Hehe Jiang Yongliang Shao Yongzhong Wu Xiaopeng Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期56-63,共8页
As promising electrode materials,transition metal oxides have attracted considerable attention owing to their excellent performance in electrochemical energy storage.However,their poor conductivity and fragile structu... As promising electrode materials,transition metal oxides have attracted considerable attention owing to their excellent performance in electrochemical energy storage.However,their poor conductivity and fragile structure limit their practical application.In this study,a binder-free nickel oxide/oxynitride network(NiON WS)bifunctional electrodes with cation multivalent states that exhibit high energy storage performance were synthesized for the first time.The massive active sites,high specific surface areas,and multiple cation valence states of NiON WS were advantageous for electrochemical redox reaction during its application in supercapacitors(1283.5 mF cm^(-2))and lithium-ion batteries(1345.0 mA h g^(-1)).Particularly,the NiON WS based flexible asymmetric SCs exhibit excellent capacitance and energy densities.First-principle calculations were employed to study the mechanism of the electrochemical performance improvement of NiON WS.This study demonstrates the potential of transition metal oxides electrode with high capacity and activity for electrochemical energy storage and conversion. 展开更多
关键词 Nickel oxynitride Bifunctional electrodes Flexible supercapacitors Lithium-ion battery First-principle calculation
下载PDF
Achieving photocatalytic water oxidation on LaNbON2 under visible light irradiation
15
作者 Lipeng Wan Feng-Qiang Xiong +3 位作者 Bingxue Zhang Ruxin Che Yue Li Minghui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期367-371,共5页
LaNbON2 has narrow bandgap and wide visible-light absorption band, yet no photocatalytic water oxidation on LaNbON2 has been reported. By a post-annealing treatment in Ar, anion vacancies were brought into LaNbON2 as ... LaNbON2 has narrow bandgap and wide visible-light absorption band, yet no photocatalytic water oxidation on LaNbON2 has been reported. By a post-annealing treatment in Ar, anion vacancies were brought into LaNbON2 as shown by EPR spectroscopy. These could act as donors in the semiconductor. And consequently the oxidative power of holes was enhanced as indicated by the difference between fermi level and valence band maximum(EF-EVBM) evaluated from valence band XPS. The annealed LaNbON2 photocatalyst acquired water oxidation ability for the first time, which was improved by combining CoOx as cocatalyst. Annealed LaNbON2 derived from La3NbO7 had smaller particle size, higher concentration of anion vacancies, bigger EF-EVBM and better performance for photocatalytic oxygen evolution reaction than LaNbON2 derived from LaNbO4. 展开更多
关键词 PHOTOCATALYSIS Perovskite oxynitride Water splitting Anion vacancy Valence band
下载PDF
Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C_6F_(12)O with a low global warming potential
16
作者 Junmyung LEE Yunho NAM +2 位作者 Jongchan LEE Hyun Woo LEE Kwang-Ho KWON 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第10期135-144,共10页
Perfluorocarbon gas is widely used in the semiconductor industry.However,perfluorocarbon has a negative effect on the global environment owing to its high global warming potential(GWP) value.An alternative solution is... Perfluorocarbon gas is widely used in the semiconductor industry.However,perfluorocarbon has a negative effect on the global environment owing to its high global warming potential(GWP) value.An alternative solution is essential.Therefore,we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF_3 with C_6F_(12)O,which has a low GWP and is in a liquid state at room temperature.In this study,silicon oxynitride(SiON) films were plasma-etched using inductively coupled CF4+C_6F_(12)O+O_2 mixed plasmas.Subsequently,the etching characteristics of the film,such as etching rate,etching profile,selectivity over Si,and photoresist,were investigated.A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics.In addition,a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface.Consequently,the etching characteristics of the C_6F_(12)O mixed plasma exhibited a lower etching rate,higher SiON/Si selectivity,lower plasma damage,and more vertical etched profiles than the conventional CHF_3 mixed plasma.In addition,the C_6F_(12)O gas can be recovered in the liquid state,thereby decreasing global warming.These results confirmed that the C_6F_(12)O precursor can sufficiently replace the conventional etching gas. 展开更多
关键词 global warming potential PERFLUOROCARBON silicon oxynitride etching characteristics liquid-state perfluorocarbon
下载PDF
Resistance of Si_2N_2O ceramics to oxidation and erosion of molten silica
17
作者 WANG Si qing(王思青) 1, YAN Yu hua(阎玉华) 2 1. Department of Materials Engineering and Applied Chemistry, National University of Defense Technology, Changsha 410073, P.R.China 2. Biomaterials Engineering Center, Wuhan University of Technology, W 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期418-420,共3页
Si 2N 2O ceramics was fabricated from powder by hot pressing in N 2 atmosphere. The resistance of the ceramic sample to oxidation and erosion of molten silica was investigated. The bulk density and open porosity of th... Si 2N 2O ceramics was fabricated from powder by hot pressing in N 2 atmosphere. The resistance of the ceramic sample to oxidation and erosion of molten silica was investigated. The bulk density and open porosity of the ceramic sample were measured according to the Archimedes principle in water. Then fracture surface of the sintered body was observed by SEM. The results and analysis indicate that the resistance of Si 2N 2O ceramics to oxidation and erosion of molten silica increases when its density increases and/or its open porosity decreases. Moreover, they also reveal that the oxidation process is an unsteady dispersing process with oxygen as the constant source, and the resistance to erosion of molten silica related to the quantity of grain boundary in unit surface area. The lowest mass gain is 2.4 g/m 2 after oxidizing at 1 000 ℃ for 100 h in air, while the lowest mass loss is 2.9 g/m 2 after 40 h erosion in molten silica. 展开更多
关键词 silicon OXYNITRIDE CERAMICS chemical stability
下载PDF
Preparation and mechanical properties of Si_2N_2O ceramics
18
作者 王思青 阎玉华 《中国有色金属学会会刊:英文版》 CSCD 2000年第4期516-519,共4页
Si 2N 2O ceramics was fabricated from pre synthesized Si 2N 2O powder by the hot pressed sintering method. The results indicated that the highest relative density and hardness(HRA) of the sample are almost 100% and 93... Si 2N 2O ceramics was fabricated from pre synthesized Si 2N 2O powder by the hot pressed sintering method. The results indicated that the highest relative density and hardness(HRA) of the sample are almost 100% and 93, respectively. Moreover, effects of some experimental parameters (such as the amount of sintering aid agent Y 2O 3, sintering time and temperature) on the density and microstructure of ceramics were investigated, and effects of the density and micro structure on some mechanical properties(HRA, σ f and K IC ) were also discussed. 展开更多
关键词 SILICON OXYNITRIDE PREPARATION CERAMICS PROPERTIES
下载PDF
Influence of Silicon Oxynitride on Slag Resistance of Al_2O_3-Si C-C Refractory
19
作者 ZHANG Guotan LI Chenchen +1 位作者 LIANG Yonghe WANG Wei 《China's Refractories》 CAS 2019年第1期37-40,共4页
Silicon oxynitride was added in shaped Al_2O_3-SiC-C refractory material to improve the slag resistance in this paper.Optimum adding quantity of silicon oxynitride powder was also studied. The results show that the sl... Silicon oxynitride was added in shaped Al_2O_3-SiC-C refractory material to improve the slag resistance in this paper.Optimum adding quantity of silicon oxynitride powder was also studied. The results show that the slag resistance of Al_2O_3-SiC-C shaped refractory is improved when 2% or 3% Si_2N_2O is added. A reasonable amount of Si_2N_2O added into Al_2O_3-Si C-C shaped refractory can produce silicon oxide into the slag, which can improve the viscosity of slag and prevent the slag erosion and penetration. 展开更多
关键词 SLAG resistance SILICON OXYNITRIDE alumina-silicon carbide-carbon shaped REFRACTORY
下载PDF
Origin of superior pseudocapacitive mechanism of transition metal nitrides
20
作者 Chao Huang Ping Qin +8 位作者 Dan Li Qingdong Ruan Hao Song Liangliang Liu Yuzheng Wu Yinghe Ma Qingwei Li Kaifu Huo Paul K.Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期561-568,I0016,共9页
Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-superca... Large-scale deployment of Internet of Things (IoT),a revolutionary innovation for a better world,is hampered by the limitation of energy self-sufficiency.Constructing transition metal nitride (TMN)-based micro-supercapacitors is a possible solution by taking advantage of the high conductivity,large specific capacitance,and large tap density of the materials.However,the pseudocapacitive storage mechanism of TMNs is still unclear consequently impeding the design of microdevices.Herein,the functions and mechanism of TMNs with different metal oxynitride (TMNO_(x)) concentrations in pseudocapacitive electrodes are investigated systematically by in situ Raman scattering,ex situ X-ray photoelectron spectroscopy,as well as ion isolation and substitution cyclic voltammetry.It is found that the specific capacitances of TMNs depend on the TMNO_(x) concentrations and the N–M–O site is responsible for the large pseudocapacitance via the Faradic reaction between TMNO_(x) and OH^(-).Our study elucidates the mechanism pertaining to pseudocapacitive charge storage of TMNs and provides insights into the design and optimization of TMNO_(x) as well as other electrode materials for pseudocapacitors. 展开更多
关键词 Internet of Things(IoT) Transition metal nitride(TMN) Metal oxynitride SUPERCAPACITORS
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部