Fugitive emission from industrial sources may result in ozone formation and health risk,while the exact contribution of this source remains incompletely understood.In this study,emission characteristics,ozone formatio...Fugitive emission from industrial sources may result in ozone formation and health risk,while the exact contribution of this source remains incompletely understood.In this study,emission characteristics,ozone formation potential(OFP)and health risk of fugitive VOCs in7 representative industries were investigated.Chemical material industry was the dominant contributor to VOCs of fugitive emission in comparison with other industries.The OFP of VOCs from fugitive emission was in the range of 1.45×10^(3)-3.98×10^(5)μg/m^(3),with a higher value than that of organized emission in seven industries except for the coking industry and the chemical material industry,suggesting that fugitive VOCs should be taken into account while developing control strategies.Acetaldehyde,m,p-xylene,n-nonane,ethylene,vinyl chloridethe and other high OFP-contributing species were the major reactive species that should be targeted.Health risk assessment investigated non-cancer and cancer risks of fugitive VOCs in 7 industries were all above safe level(HR>1 and LCR>1×10^(-4)),posing remarkable health threats to human health.OVOCs were the main contributor to non-cancer risk,while halohydrocarbons and aromatics contributed most to cancer risks,posing remarkable health threat on human health.Our findings highlighted the contribution of fugitive VOCs on ozone formation and health risk was underestimated,indicating which should be considered in emission control strategies of industrial sources.展开更多
Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the...Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the changes in significant sources contributing to inhalation cancer risks(ICRs)from 2000 to 2020 in Hong Kong,China.Total ICR decreased from 1701 to 451 cases per million between 2000−2004 and 2016−2020,largely attributed to the reduction in diesel particulate matter(DPM),gasoline and solvent use-related volatile organic compounds(VOCs),and coal/biomass combustion-related polycyclic aromatic hydrocarbons and metal(loid)s.The regional contribution of VOCs associated with industrial and halogenated solvent sources increased substantially,representing the largest non-DPM ICR contributor(37%)in 2016−2020,stressing the need for a more comprehensive risk evaluation across the fast-growing and densely populated Greater Bay Area(GBA).ICRs in Hong Kong and the GBA will likely remain over 100 cases per million by 2050.The contributions to ozone formation potential of VOC/carbonyl sources were quantified,which show a notable shift from being solvent/gasoline-dominant in 2000−2004 to being more evenly shared by various sources in 2016−2020.Establishing a similar TAP monitoring network in the GBA is anticipated to provide the monitoring data needed to facilitate the development of more informed air quality management strategies.展开更多
基金supported by the National Natural Science Foundation of China (No.42177420)。
文摘Fugitive emission from industrial sources may result in ozone formation and health risk,while the exact contribution of this source remains incompletely understood.In this study,emission characteristics,ozone formation potential(OFP)and health risk of fugitive VOCs in7 representative industries were investigated.Chemical material industry was the dominant contributor to VOCs of fugitive emission in comparison with other industries.The OFP of VOCs from fugitive emission was in the range of 1.45×10^(3)-3.98×10^(5)μg/m^(3),with a higher value than that of organized emission in seven industries except for the coking industry and the chemical material industry,suggesting that fugitive VOCs should be taken into account while developing control strategies.Acetaldehyde,m,p-xylene,n-nonane,ethylene,vinyl chloridethe and other high OFP-contributing species were the major reactive species that should be targeted.Health risk assessment investigated non-cancer and cancer risks of fugitive VOCs in 7 industries were all above safe level(HR>1 and LCR>1×10^(-4)),posing remarkable health threats to human health.OVOCs were the main contributor to non-cancer risk,while halohydrocarbons and aromatics contributed most to cancer risks,posing remarkable health threat on human health.Our findings highlighted the contribution of fugitive VOCs on ozone formation and health risk was underestimated,indicating which should be considered in emission control strategies of industrial sources.
基金supported by the Hong Kong Environmental Protection Department(Project 20-00424)supported by a fellowship award from the Research Grants Council of the HKSAR,China(HKUST PDFS2223-6S10).
文摘Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the changes in significant sources contributing to inhalation cancer risks(ICRs)from 2000 to 2020 in Hong Kong,China.Total ICR decreased from 1701 to 451 cases per million between 2000−2004 and 2016−2020,largely attributed to the reduction in diesel particulate matter(DPM),gasoline and solvent use-related volatile organic compounds(VOCs),and coal/biomass combustion-related polycyclic aromatic hydrocarbons and metal(loid)s.The regional contribution of VOCs associated with industrial and halogenated solvent sources increased substantially,representing the largest non-DPM ICR contributor(37%)in 2016−2020,stressing the need for a more comprehensive risk evaluation across the fast-growing and densely populated Greater Bay Area(GBA).ICRs in Hong Kong and the GBA will likely remain over 100 cases per million by 2050.The contributions to ozone formation potential of VOC/carbonyl sources were quantified,which show a notable shift from being solvent/gasoline-dominant in 2000−2004 to being more evenly shared by various sources in 2016−2020.Establishing a similar TAP monitoring network in the GBA is anticipated to provide the monitoring data needed to facilitate the development of more informed air quality management strategies.