We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,...We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,and their Vfbstability under frequency variation,temperature variation,and bias temperature stress are evaluated.Secondary ion mass spectroscopy(SIMS),atomic force microscopy(AFM),and x-ray photoelectron spectroscopy(XPS)indicate that O_(3)oxidation can adjust the element distribution near SiC/SiO_(2)interface,improve SiC/SiO_(2)interface morphology,and inhibit the formation of near-interface defects,respectively.In addition,we elaborate the underlying mechanism through which O_(3)oxidation improves the Vfbstability of SiC MOS capacitors by using the measurement results and O_(3)oxidation kinetics.展开更多
Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with ...Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with Si CMOS technology.The gate structure plays a key role on the electrical property.In this paper,the property of Ge MOSFET with Al_(2)O_(3)/GeO_(x)/Ge stack by ozone oxidation is reviewed.The GeO_(x)passivation mechanism by ozone oxidation and band align-ment of Al2O3/GeO_(x)/Ge stack is described.In addition,the charge distribution in the gate stack and remote Coulomb scatter-ing on carrier mobility is also presented.The surface passivation is mainly attributed to the high oxidation state of Ge.The en-ergy band alignment is well explained by the gap state theory.The charge distribution is quantitatively characterized and it is found that the gate charges make a great degradation on carrier mobility.These investigations help to provide an impressive un-derstanding and a possible instructive method to improve the performance of Ge devices.展开更多
A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded...A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.展开更多
The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated.A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model.With an in...The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated.A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model.With an initial concentration of 11.0 mg/L,the removal efficiencies of BPA(bisphenol A)could be measured up to 70%,82%,and 90%when the dosages of ozone were 1,1.5,and 2 mg/L,respectively.The impacts on BPA degradation under the con-ditions of different ozone dosages,water background values,BPA initial concentrations,and ozone adding time were ana-lyzed.The results showed that ozone dosage plays a dominant role during the process of BPA degradation,while the impact of the contact time could be ignored.UV wavelength scan-ning was used to confirm that the by-products were produced,which could be absorbed at UV254.The value of UV254 was observed to have changed during the ozonation process.Based on the change of UV254,it could be concluded that BPA is not completely degraded at low ozone dosage,while shorter adding time of total ozone dosage,high ozone dosage,and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation.The effects of applied H_(2)O_(2) dose in ozone oxidation of BPA were also examined in this study.The O_(3)-H_(2)O_(2) processes proved to have similar effects on the degradation of BPA by ozone oxidation.展开更多
Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelect...Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.展开更多
A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, a...A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.展开更多
Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas ve...Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.展开更多
For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studi...For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studied. The coal-pitch sample and the oxidized pitch residue were characterized by elementary analysis and Fourier transform infrared spectroscopy (FTIR), while the small molecular products were analyzed by a gas chromatography-mass spectrometer (GC-MS). The results show that the highest oxygen content of oxidized coal pitch had been acquired at a reaction temperature of 50℃C, an 03 flow rate of 6300 mg/h and a reaction time of 4 h. Quite a lot of hydroxyls and carbonyls were introduced into the structure of the oxidized coal-pitch, while the small molecules produced mainly involve nonpolar aro- matic compounds, aromatic anhydride and quinone compounds. It is speculated that the mechanism is direct electrophilic oxidation in which the molecules of 03 directly attack the aromatic ring at its carbon atoms with high electron density, and then generate hydroxyl or carbonyl until the aromatic ring cracks. This study shows that 03 can make the fused aromatic ring of coal-pitch become oxidized and depoly- merized, and hence the ozonization of coal-pitch can be a potential method for obtaining oxygen- containing aromatic compounds.展开更多
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite str...MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.展开更多
Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalyti...Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.展开更多
The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was e...The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.展开更多
Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), o...Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.展开更多
Studies were carried out to investigate the outdoor air pollution levels in vehicular traffic junctions in the major cities of Nsukka, Enugu and semi-urban area of Awgu all in Enugu State, Nigeria using standard analy...Studies were carried out to investigate the outdoor air pollution levels in vehicular traffic junctions in the major cities of Nsukka, Enugu and semi-urban area of Awgu all in Enugu State, Nigeria using standard analytical procedures. PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;"> was collected using Envirotech air sampler, APM 550 and analyzed gravimetrically. Other determined air pollutant gases such as SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and CO were analyzed using colorimetric techniques. The mean hourly traffic density in the vehicular traffic junctions in Nsukka metropolis, Enugu metropolis and Awgu w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:""><span style="font-family:Verdana;"> 2015, 2873 and 587 respectively. The mean range of values of PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and CO in vehicular traffic junctions within the investigated environments w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:""><span style="font-family:Verdana;"> 1.67 - 12.16 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 3.72 - 23.83 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 2.96 - 30.09 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 5.45 - 66.54 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and 1.18 - 15.17 ppm respectively. The mean levels of the determined air pollutants in the air around vehicular traffic junctions in Nsukka metropolis, Enugu metropolis and Awgu semi-urban area differed significantly. The mean levels of PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">, and CO in the air around vehicular traffic junctions in Enugu metropolis and CO in the air around traffic junctions in Nsukka metropolis were above the recommended permissible limits. Traffic density was therefore seen as the single most important factor contributing to the varying air pollution levels observed in the investigated environments.展开更多
The functionalization of multi-walled carbon nanotubes (MWCNTs) by ozone treatment has been sys- tematically investigated by using Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform inha...The functionalization of multi-walled carbon nanotubes (MWCNTs) by ozone treatment has been sys- tematically investigated by using Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform inhared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), organic elemental anal- ysis (OEA) and Boehm titration. The results showed that the functionalization process occurred at defective sites (opened mouths, tube caps, debris, etc.) before opening caps and truncating walls, and finally the graphitic structure was deteriorated. The surface oxygen content first increased with the treatment time but kept at around 8.0 wt% after 5 h. The analysis of the distribution of oxygen-containing groups re- vealed that phenolic hydroxyl was gradually converted to carboxyl and lactone, The carboxyl was found to play a pivotal role to reduce the over-potentials when we used the functionalized MWCNTs as the cat- alyst for oxygen reduction reaction (ORR).展开更多
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and ox...Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.展开更多
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH rad...As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia.展开更多
Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace r...Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.展开更多
The electro-peroxone technology,a novel type of advanced oxidation technology,is widely used in wastewater treatment.Herein,this paper reviews the advantages and problems of the electro-peroxone technology compared wi...The electro-peroxone technology,a novel type of advanced oxidation technology,is widely used in wastewater treatment.Herein,this paper reviews the advantages and problems of the electro-peroxone technology compared with electrochemical oxidation technology,ozonation technology,and traditional peroxone technology.Due to the high kinetics of pollutant degradation,the electro-peroxone process can reduce the reaction time and energy consumption of pollutant treatment in wastewater.The electroperoxone technology can promote pollutant degradation and mineralization,which shows obvious synergistic effects of electrochemical oxidation and ozonation for wastewater treatment.Most importantly,the research mechanism of the electro-peroxone technology is systematically introduced from two aspects of cathode reaction and bulk reaction.The influence of experimental parameters on the wastewater treatment effect is also discussed.Finally,the potential applications and future research directions of the electro-peroxone technology in the wastewater field are proposed.The electro-peroxone process can offer a highly efficient and energy saving water treatment method to improve the performance of existing ozonation and electrochemical systems and has therefore become a promising electrochemical advanced oxidation process for wastewater treatment.展开更多
A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfe...A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.展开更多
This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H202, S2O8-, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacter...This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H202, S2O8-, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg.min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61874017)。
文摘We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,and their Vfbstability under frequency variation,temperature variation,and bias temperature stress are evaluated.Secondary ion mass spectroscopy(SIMS),atomic force microscopy(AFM),and x-ray photoelectron spectroscopy(XPS)indicate that O_(3)oxidation can adjust the element distribution near SiC/SiO_(2)interface,improve SiC/SiO_(2)interface morphology,and inhibit the formation of near-interface defects,respectively.In addition,we elaborate the underlying mechanism through which O_(3)oxidation improves the Vfbstability of SiC MOS capacitors by using the measurement results and O_(3)oxidation kinetics.
基金supported by the Natural Science Foundation of Beijing Municipality(No.4214079)。
文摘Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with Si CMOS technology.The gate structure plays a key role on the electrical property.In this paper,the property of Ge MOSFET with Al_(2)O_(3)/GeO_(x)/Ge stack by ozone oxidation is reviewed.The GeO_(x)passivation mechanism by ozone oxidation and band align-ment of Al2O3/GeO_(x)/Ge stack is described.In addition,the charge distribution in the gate stack and remote Coulomb scatter-ing on carrier mobility is also presented.The surface passivation is mainly attributed to the high oxidation state of Ge.The en-ergy band alignment is well explained by the gap state theory.The charge distribution is quantitatively characterized and it is found that the gate charges make a great degradation on carrier mobility.These investigations help to provide an impressive un-derstanding and a possible instructive method to improve the performance of Ge devices.
文摘A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.
基金This work was completed with help from all members of the project team led by Professor GAO Naiyun.This work was supported by the National High-Tech Research and Development(863)Program of China(Grant No.2002AA649410)the Basic Science Research Program of Shanghai(Grant No.05JC14059)+1 种基金the Excellent Young Teachers Program of Tongji UniversityThis work belongs to the open pro- gram of the state key laboratory of pollution control and resources reuse (PCRRF05007), Tongji University.
文摘The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated.A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model.With an initial concentration of 11.0 mg/L,the removal efficiencies of BPA(bisphenol A)could be measured up to 70%,82%,and 90%when the dosages of ozone were 1,1.5,and 2 mg/L,respectively.The impacts on BPA degradation under the con-ditions of different ozone dosages,water background values,BPA initial concentrations,and ozone adding time were ana-lyzed.The results showed that ozone dosage plays a dominant role during the process of BPA degradation,while the impact of the contact time could be ignored.UV wavelength scan-ning was used to confirm that the by-products were produced,which could be absorbed at UV254.The value of UV254 was observed to have changed during the ozonation process.Based on the change of UV254,it could be concluded that BPA is not completely degraded at low ozone dosage,while shorter adding time of total ozone dosage,high ozone dosage,and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation.The effects of applied H_(2)O_(2) dose in ozone oxidation of BPA were also examined in this study.The O_(3)-H_(2)O_(2) processes proved to have similar effects on the degradation of BPA by ozone oxidation.
基金supported by the National Program for Key Basic Research Projects (973 Program) of China (Grant No. 2011CBA00607)the National Natural Science Foundation of China (Grant Nos. 61106089 and 51102048)+2 种基金the National Science and Technology Major Projects (Grant No. 2009ZX02035)the State Key Laboratory of ASIC and System Project (Grant No. 11MS017)the Open Funds of State Key Laboratory of ASIC and System at Fudan University (Grant No. 10KF001)
文摘Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.
文摘A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.
基金Supported by the Fund of Science and Technology of Shanxi for Young Scholars(2007021012)Research Project of Shanxi Provincial Science and Technology Department(20090321113)
文摘Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.
基金financially supported by the Key Project of Science and Technology of Universities of Henan Province (No.14A530003)the Key Project of Science and Technology of Henan Province (No.152102310090)
文摘For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studied. The coal-pitch sample and the oxidized pitch residue were characterized by elementary analysis and Fourier transform infrared spectroscopy (FTIR), while the small molecular products were analyzed by a gas chromatography-mass spectrometer (GC-MS). The results show that the highest oxygen content of oxidized coal pitch had been acquired at a reaction temperature of 50℃C, an 03 flow rate of 6300 mg/h and a reaction time of 4 h. Quite a lot of hydroxyls and carbonyls were introduced into the structure of the oxidized coal-pitch, while the small molecules produced mainly involve nonpolar aro- matic compounds, aromatic anhydride and quinone compounds. It is speculated that the mechanism is direct electrophilic oxidation in which the molecules of 03 directly attack the aromatic ring at its carbon atoms with high electron density, and then generate hydroxyl or carbonyl until the aromatic ring cracks. This study shows that 03 can make the fused aromatic ring of coal-pitch become oxidized and depoly- merized, and hence the ozonization of coal-pitch can be a potential method for obtaining oxygen- containing aromatic compounds.
文摘MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.
基金National High Technology Research and Development Program of China(No. 2013AA064301)National Natural Science Foundation of China (No. 51274210)
文摘Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.
基金Supported by the National Natural Science Foundation of China(21276013,21676008)Specialized Research Fund for the Doctoral Program of Higher Education of China(20130010110001)
文摘The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.
基金supported by National Natural Science Foundation of China(Nos.11274092,51107033,11404092,11274091)the Nantong Science and Technology Project,China(No.BK2014024)+1 种基金the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering,China(No.KF2014001)the Fundamental Research Funds for the Central Universities,China(No.2014B11414)
文摘Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.
文摘Studies were carried out to investigate the outdoor air pollution levels in vehicular traffic junctions in the major cities of Nsukka, Enugu and semi-urban area of Awgu all in Enugu State, Nigeria using standard analytical procedures. PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;"> was collected using Envirotech air sampler, APM 550 and analyzed gravimetrically. Other determined air pollutant gases such as SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and CO were analyzed using colorimetric techniques. The mean hourly traffic density in the vehicular traffic junctions in Nsukka metropolis, Enugu metropolis and Awgu w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:""><span style="font-family:Verdana;"> 2015, 2873 and 587 respectively. The mean range of values of PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and CO in vehicular traffic junctions within the investigated environments w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:""><span style="font-family:Verdana;"> 1.67 - 12.16 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 3.72 - 23.83 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 2.96 - 30.09 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, 5.45 - 66.54 μg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and 1.18 - 15.17 ppm respectively. The mean levels of the determined air pollutants in the air around vehicular traffic junctions in Nsukka metropolis, Enugu metropolis and Awgu semi-urban area differed significantly. The mean levels of PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">, and CO in the air around vehicular traffic junctions in Enugu metropolis and CO in the air around traffic junctions in Nsukka metropolis were above the recommended permissible limits. Traffic density was therefore seen as the single most important factor contributing to the varying air pollution levels observed in the investigated environments.
基金financially supported by the National Natural Science Foundation of China(Nos.21307142 and 21403261)Ningbo Science and Technology Bureau(No.2014D10004)
文摘The functionalization of multi-walled carbon nanotubes (MWCNTs) by ozone treatment has been sys- tematically investigated by using Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform inhared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), organic elemental anal- ysis (OEA) and Boehm titration. The results showed that the functionalization process occurred at defective sites (opened mouths, tube caps, debris, etc.) before opening caps and truncating walls, and finally the graphitic structure was deteriorated. The surface oxygen content first increased with the treatment time but kept at around 8.0 wt% after 5 h. The analysis of the distribution of oxygen-containing groups re- vealed that phenolic hydroxyl was gradually converted to carboxyl and lactone, The carboxyl was found to play a pivotal role to reduce the over-potentials when we used the functionalized MWCNTs as the cat- alyst for oxygen reduction reaction (ORR).
基金supported by the National Natural Science Foundation of China (No. 21177130)the National Key Technology R&D Program (No. 2011BAC06B09)the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists (No. 2009G2-28)
文摘Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.
基金supported the National Natural Science Foundation of China (Nos. 51164014 and 51568023)
文摘As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia.
基金the financial support provided by the National Natural Science Foundation of China(Nos.21277004,21190051,41121004)the Beijing Natural Science Foundation(No.8132035)+1 种基金the Fujitsu Laboratories Limited Foundation(No.k120400)the Special Fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control(2015)
文摘Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.
基金the financial support provided by the National Natural Science Foundation of China(No.21306175)the Zhejiang Provincial Natural Science Foundation of China(No.LGJ18E080001)+1 种基金the Project of Science and Technology Department of Jiashan(Nos.2020D02 and 2022A23)Zhejiang Province(No.2015C03017)。
文摘The electro-peroxone technology,a novel type of advanced oxidation technology,is widely used in wastewater treatment.Herein,this paper reviews the advantages and problems of the electro-peroxone technology compared with electrochemical oxidation technology,ozonation technology,and traditional peroxone technology.Due to the high kinetics of pollutant degradation,the electro-peroxone process can reduce the reaction time and energy consumption of pollutant treatment in wastewater.The electroperoxone technology can promote pollutant degradation and mineralization,which shows obvious synergistic effects of electrochemical oxidation and ozonation for wastewater treatment.Most importantly,the research mechanism of the electro-peroxone technology is systematically introduced from two aspects of cathode reaction and bulk reaction.The influence of experimental parameters on the wastewater treatment effect is also discussed.Finally,the potential applications and future research directions of the electro-peroxone technology in the wastewater field are proposed.The electro-peroxone process can offer a highly efficient and energy saving water treatment method to improve the performance of existing ozonation and electrochemical systems and has therefore become a promising electrochemical advanced oxidation process for wastewater treatment.
基金supported by the National Basic Research Program of China(Grant No.2013CB228301)
文摘A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2012-0003505)Korea Ministry of Environment as "Global Top Project" (No. GT-11-B-01-005-1)
文摘This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H202, S2O8-, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg.min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics.