BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanis...BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally alte...After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.展开更多
Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long...Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long non-coding RNAs(lncRNAs)and their downstream regulators are regarded to be implicated in the progression of multiple types of malignancies.Studies have shown that the lncRNA small nucleolar RNA host gene 4(SNHG4)serves as a tumor promoter in various malignancies,while its function in GC has yet to be characterized.Therefore,our study aimed to explore the role and underlying mechanism of SNHG4 in GC.Methods:We used qRT-PCR to analyze SNHG4 expression in GC tissues and cells.Kaplan-Meier analysis was used to assess the correlation between SNHG4 expression and the survival rate of GC patients.Cellular function experiments such as CCK-8,BrdU,colony formation,flow cytometry analysis,and transwell were performed to explore the effects of SNHG4 on GC cell proliferation,apoptosis,cell cycle,migration,and invasion.We also established xenograft mouse models to explore the effect of SNHG4 on GC tumor growth.Mechanically,dual luciferase reporter assay was used to verify the interaction between SNHG4 and miR-409-3p and between miR-409-3p and cAMP responsive element binding protein 1(CREB1).Results:The results indicated that SNHG4 was overexpressed in GC tissues and cell lines,and was linked with poor survival rate of GC patients.SNHG4 promoted GC cell proliferation,migration,and invasion while inhibiting cell apoptosis and cell cycle arrest in vitro.The in vivo experiment indicated that SNHG4 facilitated GC tumor growth.Furthermore,SNHG4 was demonstrated to bind to miR-409-3p.Moreover,CREB1 was directly targeted by miR-409-3p.Rescue assays demonstrated that miR-409-3p deficiency reversed the suppressive impact of SNHG4 knockdown on GC cell malignancy.Additionally,miR-409-3p was also revealed to inhibit GC cell proliferation,migration,and invasion by targeting CREB1.Conclusion:In conclusion,we verified that the SNHG4 promoted GC growth and metastasis by binding to miR-409-3p to upregulate CREB1,which may deepen the understanding of the underlying mechanism in GC development.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-...Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-1(PD-L1),and cytotoxic T-lymphocyte antigen-4(CTLA-4)show limited clinical efficacy in many breast cancers.B7H3 has been widely reported as an immunosuppressive molecule,but its immunological function in breast cancer patients remains unclear.Methods:We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program(TCGA)and the Gene Expression Omnibus(GEO)databases.MicroRNAs were selected using the TarBase,miRTarBase,and miRBase databases.The regulatory role of the microRNA hsa-miR-214-3p on B7H3 was investigated through dual-luciferase reporter assays,which identified the specific action sites of interaction.The expression levels of B7H3 and hsa-miR-214-3p in human breast cancer tissues and adjacent normal tissues were quantified using Western blotting and quantitative PCR(qPCR).In vitro experiments were performed to observe the effects of modulating the expression of B7H3 or hsa-miR-214-3p on breast cancer cell proliferation and apoptosis.Additionally,the regulatory impact of hsa-miR-214-3p on B7H3 was examined.Enzyme-linked immunosorbent assays(ELISA)and flow cytometry were employed to assess the effects of co-cultured breast cancer cells and normal human peripheral blood mononuclear cells(PBMCs)on immune cells and associated cytokines.Results:In breast cancer tissues,the expression level of B7H3 is inversely correlated with that of hsa-miR-214-3p,as well as with the regulatory effects on breast cancercell behavior.Hsa-miR-214-3p was found to inhibit breast cancer cell growth by downregulating B7H3.Importantly,our research identified,for the first time,two binding sites for hsa-miR-214-3p on the 3’UTR of B7H3,both of which exert similar effects independently.Co-culture experiments revealed that hsamiR-214-3p obstructs the suppressive function of B7H3 on CD8^(+)T cells and natural killer cells.Conclusions:This study confirms the existence of two hsa-miR-214-3p binding sites on the 3’UTR of B7H3,reinforcing the role of hsamiR-214-3p as a regulatory factor for B7H3.In breast cancer,hsa-miR-214-3p reduces tumor cell proliferation and enhances the tumor immune microenvironment by downregulating B7H3.These findings suggest new potential targets for the clinical treatment of breast cancer.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact mo...BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.展开更多
Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent...Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent attention.Cancer-associated fibroblasts(CAFs)are the main factors that contribute to the TME function,and CAF exosomes are closely linked to NSCLC.Methods:The expression levels of miR-3124-5p and Toll-interacting protein(TOLLIP)were analysed by bioinformatics prediction combined with RT-qPCR/Western Blot detection.Fibroblasts were isolated and identified from clinical NSCLC tissues.Transmission electron microscopy and Western Blot were used to identify exosomes from these cells.Changes in proliferation(CCK-8 and clone formation),migration(wound healing),and invasion(transwell)of NSCLC cells were measured.The Luciferase reporter test was applied to clarify the binding of miR-3124-5p to TOLLIP.The TOLLIP/TLR4/MyD88/NF-κB pathway proteins were determined using Western blot analysis.Results:MiR-3124-5p is overexpressed in clinical tissues and cells of NSCLC.MiR-3124-5p was dramatically enriched in CAF-derived exosomes.Cellular experiments revealed that CAFs delivered miR-3124-5p into NSCLC cells via exosomes,stimulating cancer cell progression.MiR-3124-5p acted as a sponge to negatively regulate TOLLIP expression,which activated the TLR4/MyD88/NF-κB axis to promote the occurrence and development of NSCLC.Functional salvage tests were performed to determine whether CAF-exosome-derived miR-3124-5p plays a pro-cancer role in NSCLC by affecting the TOLLIP signalling pathway.Conclusions:These results provide an interesting direction for the diagnosis and therapy of NSCLC.展开更多
基金Supported by the National Research Foundation of Korea,No.2020R1A2C1100891Soonchunhyang University Research Fund,No.2024-05-014.
文摘BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.
文摘Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long non-coding RNAs(lncRNAs)and their downstream regulators are regarded to be implicated in the progression of multiple types of malignancies.Studies have shown that the lncRNA small nucleolar RNA host gene 4(SNHG4)serves as a tumor promoter in various malignancies,while its function in GC has yet to be characterized.Therefore,our study aimed to explore the role and underlying mechanism of SNHG4 in GC.Methods:We used qRT-PCR to analyze SNHG4 expression in GC tissues and cells.Kaplan-Meier analysis was used to assess the correlation between SNHG4 expression and the survival rate of GC patients.Cellular function experiments such as CCK-8,BrdU,colony formation,flow cytometry analysis,and transwell were performed to explore the effects of SNHG4 on GC cell proliferation,apoptosis,cell cycle,migration,and invasion.We also established xenograft mouse models to explore the effect of SNHG4 on GC tumor growth.Mechanically,dual luciferase reporter assay was used to verify the interaction between SNHG4 and miR-409-3p and between miR-409-3p and cAMP responsive element binding protein 1(CREB1).Results:The results indicated that SNHG4 was overexpressed in GC tissues and cell lines,and was linked with poor survival rate of GC patients.SNHG4 promoted GC cell proliferation,migration,and invasion while inhibiting cell apoptosis and cell cycle arrest in vitro.The in vivo experiment indicated that SNHG4 facilitated GC tumor growth.Furthermore,SNHG4 was demonstrated to bind to miR-409-3p.Moreover,CREB1 was directly targeted by miR-409-3p.Rescue assays demonstrated that miR-409-3p deficiency reversed the suppressive impact of SNHG4 knockdown on GC cell malignancy.Additionally,miR-409-3p was also revealed to inhibit GC cell proliferation,migration,and invasion by targeting CREB1.Conclusion:In conclusion,we verified that the SNHG4 promoted GC growth and metastasis by binding to miR-409-3p to upregulate CREB1,which may deepen the understanding of the underlying mechanism in GC development.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金funded by the Natural Science Foundation of Guangdong Province(grant number 2022A1515012315)Guangdong Medical Science and Technology Research Fund Project(grant number A2023185)+2 种基金the Discipline Construction Project of Guangdong Medical University(grant number 4SG22005G)the 2023 Provincial Basic and Applied Basic Research Fund Enterprise Joint Fund Project(grant number 2023A1515220149)Southern Medical University Shunde Hospital 2023 Research Initiation Programme Project(SRSP2023016).
文摘Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-1(PD-L1),and cytotoxic T-lymphocyte antigen-4(CTLA-4)show limited clinical efficacy in many breast cancers.B7H3 has been widely reported as an immunosuppressive molecule,but its immunological function in breast cancer patients remains unclear.Methods:We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program(TCGA)and the Gene Expression Omnibus(GEO)databases.MicroRNAs were selected using the TarBase,miRTarBase,and miRBase databases.The regulatory role of the microRNA hsa-miR-214-3p on B7H3 was investigated through dual-luciferase reporter assays,which identified the specific action sites of interaction.The expression levels of B7H3 and hsa-miR-214-3p in human breast cancer tissues and adjacent normal tissues were quantified using Western blotting and quantitative PCR(qPCR).In vitro experiments were performed to observe the effects of modulating the expression of B7H3 or hsa-miR-214-3p on breast cancer cell proliferation and apoptosis.Additionally,the regulatory impact of hsa-miR-214-3p on B7H3 was examined.Enzyme-linked immunosorbent assays(ELISA)and flow cytometry were employed to assess the effects of co-cultured breast cancer cells and normal human peripheral blood mononuclear cells(PBMCs)on immune cells and associated cytokines.Results:In breast cancer tissues,the expression level of B7H3 is inversely correlated with that of hsa-miR-214-3p,as well as with the regulatory effects on breast cancercell behavior.Hsa-miR-214-3p was found to inhibit breast cancer cell growth by downregulating B7H3.Importantly,our research identified,for the first time,two binding sites for hsa-miR-214-3p on the 3’UTR of B7H3,both of which exert similar effects independently.Co-culture experiments revealed that hsamiR-214-3p obstructs the suppressive function of B7H3 on CD8^(+)T cells and natural killer cells.Conclusions:This study confirms the existence of two hsa-miR-214-3p binding sites on the 3’UTR of B7H3,reinforcing the role of hsamiR-214-3p as a regulatory factor for B7H3.In breast cancer,hsa-miR-214-3p reduces tumor cell proliferation and enhances the tumor immune microenvironment by downregulating B7H3.These findings suggest new potential targets for the clinical treatment of breast cancer.
基金Supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBJC00001the Key Discipline Special Project of Tianjin Municipal Health Commission,No.TJWJ2022XK016.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.
文摘Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent attention.Cancer-associated fibroblasts(CAFs)are the main factors that contribute to the TME function,and CAF exosomes are closely linked to NSCLC.Methods:The expression levels of miR-3124-5p and Toll-interacting protein(TOLLIP)were analysed by bioinformatics prediction combined with RT-qPCR/Western Blot detection.Fibroblasts were isolated and identified from clinical NSCLC tissues.Transmission electron microscopy and Western Blot were used to identify exosomes from these cells.Changes in proliferation(CCK-8 and clone formation),migration(wound healing),and invasion(transwell)of NSCLC cells were measured.The Luciferase reporter test was applied to clarify the binding of miR-3124-5p to TOLLIP.The TOLLIP/TLR4/MyD88/NF-κB pathway proteins were determined using Western blot analysis.Results:MiR-3124-5p is overexpressed in clinical tissues and cells of NSCLC.MiR-3124-5p was dramatically enriched in CAF-derived exosomes.Cellular experiments revealed that CAFs delivered miR-3124-5p into NSCLC cells via exosomes,stimulating cancer cell progression.MiR-3124-5p acted as a sponge to negatively regulate TOLLIP expression,which activated the TLR4/MyD88/NF-κB axis to promote the occurrence and development of NSCLC.Functional salvage tests were performed to determine whether CAF-exosome-derived miR-3124-5p plays a pro-cancer role in NSCLC by affecting the TOLLIP signalling pathway.Conclusions:These results provide an interesting direction for the diagnosis and therapy of NSCLC.