The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
By using the perturbation theories on sums of ranges for nonlinear accretive mappings of Calvert and Gupta (1978),the abstract result on the existence of a solution u ∈ L^p (Ω) to nonlinear equations involving p...By using the perturbation theories on sums of ranges for nonlinear accretive mappings of Calvert and Gupta (1978),the abstract result on the existence of a solution u ∈ L^p (Ω) to nonlinear equations involving p-Laplacian operator △p, where 2N/N+1〈p〈+∞ and N (≥ 1 ) denotes the dimension of R^N,is studied. The equation discussed and the methods shown in the paper are continuation and complement to the corresponding results of Li and Zhen's previous papers. To obtain the result ,some new techniques are used.展开更多
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Au-tonomous Region(XJEDU2021Y048)Doctoral Initiation Fund of Xinjiang Institute of Engineering(2020xgy012302).
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Autonomous Region(XJEDU2021Y048)。
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘By using the perturbation theories on sums of ranges for nonlinear accretive mappings of Calvert and Gupta (1978),the abstract result on the existence of a solution u ∈ L^p (Ω) to nonlinear equations involving p-Laplacian operator △p, where 2N/N+1〈p〈+∞ and N (≥ 1 ) denotes the dimension of R^N,is studied. The equation discussed and the methods shown in the paper are continuation and complement to the corresponding results of Li and Zhen's previous papers. To obtain the result ,some new techniques are used.