In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order t...In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.展开更多
We shall introduce 1-type Lipschitz multifunctions from R into generalized 2-normed spaces, and give some results about their 1-type Lipschitz selections.
The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-norm...The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.展开更多
In this paper, we give four general results on linear extension of isometries between the unit spheres in β-normed spaces. These results improve the corresponding theorems in β-normed spaces.
We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isome...We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.展开更多
For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and th...For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.展开更多
In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14...In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.展开更多
In this paper,we first discuss the boundedness of certain integral operator T_(t) on the normal weight general function space F(p,μ,s)in the unit ball Bnof C^(n).As an application of this operator,we prove that the G...In this paper,we first discuss the boundedness of certain integral operator T_(t) on the normal weight general function space F(p,μ,s)in the unit ball Bnof C^(n).As an application of this operator,we prove that the Gleason’s problem is solvable on F(p,μ,s).展开更多
The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space....The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b...In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.展开更多
In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable ...The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.展开更多
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of consi...LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of considerable interest nowadays. In this article, the authors give several equivalent descriptions of the functions in the F(p, q, s) space on Ω in terms of fractional differential operators. At the same time, the authors give the relationship between F(p, q, s) space and Bloch type space on Ω too.展开更多
基金supported by the Natural Science Foundation of Hunan Province of China(2022JJ30369)the Education Department Important Foundation of Hunan Province in China(23A0095)。
文摘In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.
文摘We shall introduce 1-type Lipschitz multifunctions from R into generalized 2-normed spaces, and give some results about their 1-type Lipschitz selections.
文摘The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.
文摘In this paper, we give four general results on linear extension of isometries between the unit spheres in β-normed spaces. These results improve the corresponding theorems in β-normed spaces.
文摘We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.
基金The NSF (Q1107107) of Jiangsu Educational Commission.
文摘For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.
文摘In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.
基金Supported by the National Natural Science Foundation of China(11942109)the Natural Science Foundation of Hunan Province in China(2022JJ30369)。
文摘In this paper,we first discuss the boundedness of certain integral operator T_(t) on the normal weight general function space F(p,μ,s)in the unit ball Bnof C^(n).As an application of this operator,we prove that the Gleason’s problem is solvable on F(p,μ,s).
文摘The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
文摘In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
文摘The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of considerable interest nowadays. In this article, the authors give several equivalent descriptions of the functions in the F(p, q, s) space on Ω in terms of fractional differential operators. At the same time, the authors give the relationship between F(p, q, s) space and Bloch type space on Ω too.