利用Fe Ti B熔体反应制备了TiB2颗粒增强铁基复合材料,研究了该材料的显微组织。热力学分析表明,Fe Ti B熔体具有反应生成TiB2的可能性。试验结果表明,TiB2颗粒均匀分布于α Fe晶粒中,晶内TiB2粒子平均间距大于晶界。TiB2粒子尺寸大多为...利用Fe Ti B熔体反应制备了TiB2颗粒增强铁基复合材料,研究了该材料的显微组织。热力学分析表明,Fe Ti B熔体具有反应生成TiB2的可能性。试验结果表明,TiB2颗粒均匀分布于α Fe晶粒中,晶内TiB2粒子平均间距大于晶界。TiB2粒子尺寸大多为1~6μm,形状大多为接近等轴的多面体。展开更多
多孔碳材料由于具有优异的导电性,高的孔隙率以及可有效地吸附多硫化物等优点被广泛应用于锂硫电池.本文以植酸(PA)和三聚氰胺作为磷源和氮源,通过高温裂解法成功制备了N,P共掺杂的三维多孔碳纳米复合材料(FeNi/FeNiP@NP-C)作为载硫基质...多孔碳材料由于具有优异的导电性,高的孔隙率以及可有效地吸附多硫化物等优点被广泛应用于锂硫电池.本文以植酸(PA)和三聚氰胺作为磷源和氮源,通过高温裂解法成功制备了N,P共掺杂的三维多孔碳纳米复合材料(FeNi/FeNiP@NP-C)作为载硫基质.FeNi/FeNiP@NP-C三维多孔碳骨架具有良好的导电性能,它不仅能够有效地吸附可溶性多硫化物,同时能够促进电子转移从而提高反应动力学.实验结果表明S@FeNi/FeNiP@NP-C正极有较好的电化学性能和循环稳定性,在硫负载量为1.0 mg cm^(-2)以及0.1C的电流密度下,S@FeNi/FeNiP@NPC电极可达到1035.8 mAh g^(-1)的初始放电比容量,在0.1 C电流密度及较高硫负载量(4.3 mg cm^(-2))下循环100圈后仍能保持435.5 mAh g-1的放电比容量.展开更多
文摘利用Fe Ti B熔体反应制备了TiB2颗粒增强铁基复合材料,研究了该材料的显微组织。热力学分析表明,Fe Ti B熔体具有反应生成TiB2的可能性。试验结果表明,TiB2颗粒均匀分布于α Fe晶粒中,晶内TiB2粒子平均间距大于晶界。TiB2粒子尺寸大多为1~6μm,形状大多为接近等轴的多面体。
文摘多孔碳材料由于具有优异的导电性,高的孔隙率以及可有效地吸附多硫化物等优点被广泛应用于锂硫电池.本文以植酸(PA)和三聚氰胺作为磷源和氮源,通过高温裂解法成功制备了N,P共掺杂的三维多孔碳纳米复合材料(FeNi/FeNiP@NP-C)作为载硫基质.FeNi/FeNiP@NP-C三维多孔碳骨架具有良好的导电性能,它不仅能够有效地吸附可溶性多硫化物,同时能够促进电子转移从而提高反应动力学.实验结果表明S@FeNi/FeNiP@NP-C正极有较好的电化学性能和循环稳定性,在硫负载量为1.0 mg cm^(-2)以及0.1C的电流密度下,S@FeNi/FeNiP@NPC电极可达到1035.8 mAh g^(-1)的初始放电比容量,在0.1 C电流密度及较高硫负载量(4.3 mg cm^(-2))下循环100圈后仍能保持435.5 mAh g-1的放电比容量.