Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
大家想想看如果手机能和电脑随时随地的连接在一起那会怎么样呢?用手机遥控电脑、把手机的精彩短信随时随地的保存到电脑中、让电脯自动回复手机的短信……这些以前很难想象的事现在部在一个软件的帮助下成为了可能,它就是M2P个人信息...大家想想看如果手机能和电脑随时随地的连接在一起那会怎么样呢?用手机遥控电脑、把手机的精彩短信随时随地的保存到电脑中、让电脯自动回复手机的短信……这些以前很难想象的事现在部在一个软件的帮助下成为了可能,它就是M2P个人信息中心(Mobile to PC,手机到个人电脑)。展开更多
The development of efficient oxygen evolution electrocatalysts with reduced noble metal uses is a critical challenge for the deployment of various advanced energy conversion technologies.Here,a series of lanthanide-co...The development of efficient oxygen evolution electrocatalysts with reduced noble metal uses is a critical challenge for the deployment of various advanced energy conversion technologies.Here,a series of lanthanide-contained 6H-perovskites with a formula of Ba3LnIr2〇9(Ln=lanthanides)are investigated as oxygen evolution electrocatalysts,whose active subunits(i.e.,face-sharing Ir〇6 dimers)can be regulated by the lanthanides in terms of catalytic activity.By using density functional theory(DFT)calculations,we establish the theoretical trend in activity for Ba3LnIr2〇96H-perovskites,the activity of which is correlated with the difference of adsorption free energy(△G〇-△Goh)between O*and OH*reaction intermediates.We further establish a volcano curve between△Go—△Goh and the calculated 0 p-band center Among the Ba3LnIr2〇96H-perovskites,Ba3Lalr2〇9 locates at the peak of volcano curve,and correspondingly is the most active electrocatalyst due to the optimal 0 p-band property.展开更多
An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instant...An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instantaneous twist center is applied to analyze the displacement relationship of pile heads and establish the static equilibrium equations of the pile cap.The horizontal interaction among the individual piles is considered through the generalized p-multiplier.The coupling effect of lateral resistance on the torsional resistance of each pile is quantified using an empirical factorβ;the lateral and torsional nonlinear responses of individual piles are modeled by p-y andτ-θcurves,respectively.The proposed approach not only captures the most significant aspect of the group effect and coupling effect in a pile group subjected to combined lateral and torsional loading,but also automatically updates p-multipliers of individual piles based on pile cap displacements.The proposed approach was verified using results of model tests on pile groups subjected to lateral loading,torsional loading,and combined lateral and torsional loading,separately.In general,the pile cap response and the transfer of applied loads in the pile groups agree well with the test results.展开更多
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
文摘The development of efficient oxygen evolution electrocatalysts with reduced noble metal uses is a critical challenge for the deployment of various advanced energy conversion technologies.Here,a series of lanthanide-contained 6H-perovskites with a formula of Ba3LnIr2〇9(Ln=lanthanides)are investigated as oxygen evolution electrocatalysts,whose active subunits(i.e.,face-sharing Ir〇6 dimers)can be regulated by the lanthanides in terms of catalytic activity.By using density functional theory(DFT)calculations,we establish the theoretical trend in activity for Ba3LnIr2〇96H-perovskites,the activity of which is correlated with the difference of adsorption free energy(△G〇-△Goh)between O*and OH*reaction intermediates.We further establish a volcano curve between△Go—△Goh and the calculated 0 p-band center Among the Ba3LnIr2〇96H-perovskites,Ba3Lalr2〇9 locates at the peak of volcano curve,and correspondingly is the most active electrocatalyst due to the optimal 0 p-band property.
基金Project supported by the National Natural Science Foundation of China(Nos.50809060 and 51579218)the Fundamental Research Funds for the Central Universities,China(No.2011QNA4013)。
文摘An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instantaneous twist center is applied to analyze the displacement relationship of pile heads and establish the static equilibrium equations of the pile cap.The horizontal interaction among the individual piles is considered through the generalized p-multiplier.The coupling effect of lateral resistance on the torsional resistance of each pile is quantified using an empirical factorβ;the lateral and torsional nonlinear responses of individual piles are modeled by p-y andτ-θcurves,respectively.The proposed approach not only captures the most significant aspect of the group effect and coupling effect in a pile group subjected to combined lateral and torsional loading,but also automatically updates p-multipliers of individual piles based on pile cap displacements.The proposed approach was verified using results of model tests on pile groups subjected to lateral loading,torsional loading,and combined lateral and torsional loading,separately.In general,the pile cap response and the transfer of applied loads in the pile groups agree well with the test results.