从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作...从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。展开更多
文摘从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。