期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
共轭梯度法中预条件子的优化
1
作者 郭存柱 《应用数学进展》 2017年第4期651-658,共8页
为了降低方程组求解中共轭梯度法系数矩阵的条件数,提高收敛速度,常用预处理方法将原方程进行等价转化,同时预条件子既要接近原系数矩阵,又要容易求其逆矩阵。本文从寻求对角预条件子出发,用矩阵的特征值分解方法解出了预处理后系数矩... 为了降低方程组求解中共轭梯度法系数矩阵的条件数,提高收敛速度,常用预处理方法将原方程进行等价转化,同时预条件子既要接近原系数矩阵,又要容易求其逆矩阵。本文从寻求对角预条件子出发,用矩阵的特征值分解方法解出了预处理后系数矩阵特征值矩阵的显式表达,得到对角预条件子矩阵的最优选择,并予以证明。给出了三个p-范数预条件子,将之与常用的预条件子进行对比,实例检验表明三个p-范数预条件子的作用更优越,且使算法收敛更快。 展开更多
关键词 条件 条件 特征值分解 p-范数预条件子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部