We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C1,αestimates across the di...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C1,αestimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be...In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.展开更多
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogene...In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.展开更多
Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we pro...Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.展开更多
The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions ...The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wav...The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the other...An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the others, f is superlinear.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtai...The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are co...In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.展开更多
This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes...This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.展开更多
In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solut...In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solutions in the setting of some Musielak-Orlicz spaces. Our results are generalization of the corresponding results for elliptic partial differential equations with power growth.展开更多
In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive...In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.展开更多
In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results...In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.展开更多
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C1,αestimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
基金supported by Ministry of Education and Training(Vietnam),under grant number B2023-SPS-01。
文摘In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.
基金supported by the Beijing Natural Science Foundation(1212003)。
文摘Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.
基金the National Natural Science Foundation of China(Grant Nos.12061051 and 11965014)。
文摘The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
文摘An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the others, f is superlinear.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
文摘The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
基金Project supported by the Natural Science Foundation of Guangdong Province
文摘In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.
文摘This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.
文摘In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solutions in the setting of some Musielak-Orlicz spaces. Our results are generalization of the corresponding results for elliptic partial differential equations with power growth.
基金supported by Natural Science Foundation of China(11271372)Hunan Provincial Natural Science Foundation of China(12JJ2004)
文摘In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.
文摘In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.