The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction p...The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction parameters, such as the structure of metalloporphyrin, the air flow rate, and the temperature, were studied. The preliminary mechanism of the aerobic oxidation of p-menthane catalyzed by metalloporphyrins was also discussed. The results show that the reaction is greatly accelerated by the addition of metalloporphyrins at very low concentration, in terms of both the yield and formation rate of PMHP, and the high selectivity of PMHP is maintained during the reaction. Temperature of 120 ℃ and reaction time of around 5 h are the optimal conditions for the best result in the presence of 0.06 mmol/L monomanganeseporphyrins ((p-Cl)TPPMnC1). Furthermore, the yield of PMHP is increased remarkably when the reaction is carried out under programmed temperature compared with the constant temperature. When the reaction is catalyzed by 0.06 mmol/L((p-Cl)TPPMnCl) at the air flow rate of 600 mL/min and 120 ℃ for 4 h, and then the temperature is reduced to 110 ℃, for another 4 h, the yield of PMHP reaches 24.3 %, which is higher than that of the reaction at a constant temperature of 120 ℃ or 110 ℃ for 8 h.展开更多
p-Menthane type monoterpene derivatives were identified as bio-based compounds with high herbicidal activities. In order to search novel p-menthane type monoterpene derivatives in good performance, a series of novel c...p-Menthane type monoterpene derivatives were identified as bio-based compounds with high herbicidal activities. In order to search novel p-menthane type monoterpene derivatives in good performance, a series of novel cis-p-menthane type Schiff base derivatives were designed and synthesized. All target products were easily available novel compounds and characterized by FT-IR,^1H NMR,^13 C NMR and ESI+-MS. Their pre-emergence herbicidal activities against annual ryegrass were evaluated. The bioassays indicated that most of the target compounds displayed excellent herbicidal activities in pre-emergence treatment.展开更多
基金Project (20606008) supported by the National Natural Science Foundation of China
文摘The aerobic oxidation of p-menthane to p-menthane hydroperoxide (PMHP) in the presence of metalloporphyrins was investigated in an intermittent mode under an atmospheric pressure of air. Several important reaction parameters, such as the structure of metalloporphyrin, the air flow rate, and the temperature, were studied. The preliminary mechanism of the aerobic oxidation of p-menthane catalyzed by metalloporphyrins was also discussed. The results show that the reaction is greatly accelerated by the addition of metalloporphyrins at very low concentration, in terms of both the yield and formation rate of PMHP, and the high selectivity of PMHP is maintained during the reaction. Temperature of 120 ℃ and reaction time of around 5 h are the optimal conditions for the best result in the presence of 0.06 mmol/L monomanganeseporphyrins ((p-Cl)TPPMnC1). Furthermore, the yield of PMHP is increased remarkably when the reaction is carried out under programmed temperature compared with the constant temperature. When the reaction is catalyzed by 0.06 mmol/L((p-Cl)TPPMnCl) at the air flow rate of 600 mL/min and 120 ℃ for 4 h, and then the temperature is reduced to 110 ℃, for another 4 h, the yield of PMHP reaches 24.3 %, which is higher than that of the reaction at a constant temperature of 120 ℃ or 110 ℃ for 8 h.
基金funded by the Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(No.2015BAD15B04)the National Natural Science Foundation of China(No.31600466)the Fundamental Research Funds for Jiangsu Key Laboratory of Biomass Energy and Material(No.JSBEM-S-201605)
文摘p-Menthane type monoterpene derivatives were identified as bio-based compounds with high herbicidal activities. In order to search novel p-menthane type monoterpene derivatives in good performance, a series of novel cis-p-menthane type Schiff base derivatives were designed and synthesized. All target products were easily available novel compounds and characterized by FT-IR,^1H NMR,^13 C NMR and ESI+-MS. Their pre-emergence herbicidal activities against annual ryegrass were evaluated. The bioassays indicated that most of the target compounds displayed excellent herbicidal activities in pre-emergence treatment.