Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determine...Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determined as: ZnO 0.25g, pH 7, p-NCBconcentration 30mg/L. These variables in terms of the degradation rate have beendiscussed, which was defined as the rate of the initial degradation to the final degrada-tion of p-NCB. When all of the experimental degradation rate values are plotted as afunction of irradiation time, all of the points appeared on a single line for wide range ofp-NCB degradations. On the basis of these results, it has been concluded that at lowerZnO catalyst amount, much of the light is transmitted through the slurry in the con-tainer beaker, while at higher catalyst amount, all the incident photons are observedby the slurry. Degradation rates of p-NCB were found to decrease with increasingsolution pH. It has been concluded that the maximum degradation rate values of p-NCB under principally the same experimental conditions mentioned above are 97.4%,98.8% and 95.5% at 100min respectively. The results suggest that the photocatalyticdegradation is initiated by an oxidation of the p-NCB through ZnO surface-adsorbedhydroxyl radicals. Absorption spectra are recorded using spectrophotometer before andafter UV-irradiation in the wavelength range 200-400nm at room temperature. Itis found that the variation of irradiation time over the range 20-100min resulted inchange in the form of the spectrum linear absorption and a higher maximum valuewill be obtained at longer irradiation time.展开更多
文摘Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determined as: ZnO 0.25g, pH 7, p-NCBconcentration 30mg/L. These variables in terms of the degradation rate have beendiscussed, which was defined as the rate of the initial degradation to the final degrada-tion of p-NCB. When all of the experimental degradation rate values are plotted as afunction of irradiation time, all of the points appeared on a single line for wide range ofp-NCB degradations. On the basis of these results, it has been concluded that at lowerZnO catalyst amount, much of the light is transmitted through the slurry in the con-tainer beaker, while at higher catalyst amount, all the incident photons are observedby the slurry. Degradation rates of p-NCB were found to decrease with increasingsolution pH. It has been concluded that the maximum degradation rate values of p-NCB under principally the same experimental conditions mentioned above are 97.4%,98.8% and 95.5% at 100min respectively. The results suggest that the photocatalyticdegradation is initiated by an oxidation of the p-NCB through ZnO surface-adsorbedhydroxyl radicals. Absorption spectra are recorded using spectrophotometer before andafter UV-irradiation in the wavelength range 200-400nm at room temperature. Itis found that the variation of irradiation time over the range 20-100min resulted inchange in the form of the spectrum linear absorption and a higher maximum valuewill be obtained at longer irradiation time.