A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, th...A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-1 is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4, which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.展开更多
Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, ...Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, the molar ratio between silica and zirconia was 10:1, the calcination temperature was 550 ℃ and the soaked consistency of H2SO4 was 1.0 mol.L-1. Under the conditions that the ratio of methanol to aeid(mL/ g) was 12:1, the amount of catalyst was 0.5 g, the reaction time was 5 h and the stirring speed was 800 r.min-1, the yield of methyl p-nitrobenzoate could reach up to 90.5%. Then the characterizations of cataslyst, including the acidity and types of acidic centers, specific surface area and surface structure was respectively examined by Hammer indicator, in-situ pyridine IR, BET method, FT-IR(KBr), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results showed that the catalyst SO42-/ZrO2-SiO2 was superacid with high specific surface area due to Ho〈-12.70. It contained acidic sites of Lewis and BrФnsted, and its surface structure changed after esterification. The zirconia crystal was mainly tetragonal and silica crystal was not found.展开更多
基金Educational Committee of Jiangsu Province. (01KJD150004)
文摘A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-1 is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4, which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.
基金Supported by Natural Science Foundation of Zhejiang Province(No.Y404082)
文摘Solid superacid SO42-/ZrO2-SiO2 was prepared by dip-impregnation method, and its catalytic activity was tested with esterification of p-nitrobenzoic acid and methanol. The optimum conditions were also found, that is, the molar ratio between silica and zirconia was 10:1, the calcination temperature was 550 ℃ and the soaked consistency of H2SO4 was 1.0 mol.L-1. Under the conditions that the ratio of methanol to aeid(mL/ g) was 12:1, the amount of catalyst was 0.5 g, the reaction time was 5 h and the stirring speed was 800 r.min-1, the yield of methyl p-nitrobenzoate could reach up to 90.5%. Then the characterizations of cataslyst, including the acidity and types of acidic centers, specific surface area and surface structure was respectively examined by Hammer indicator, in-situ pyridine IR, BET method, FT-IR(KBr), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results showed that the catalyst SO42-/ZrO2-SiO2 was superacid with high specific surface area due to Ho〈-12.70. It contained acidic sites of Lewis and BrФnsted, and its surface structure changed after esterification. The zirconia crystal was mainly tetragonal and silica crystal was not found.