The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic ...The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic acid,o-chloro-benzoic acid, and m-nitro-benzoic acid in 1-octanol were measured by the polythermal method in the temperature range of 20-50℃. The experimental data were regressed with the. Wilson equation and the λH equation. The experimental results showed that the solubility of the four chemicals in 1-octanol increased significantly with temperature. The results indicate that the molecular structure and interactions affect the solubility significantly.The solubility order of the benzoic acid derivatives is as follows: m-nitro-benzoic acid〉o-chloro-benzoic acid〉 o-amino-benzoic acid〉p-amino-benzoic acid. Both the Wilson equation and λH equation are in good agreement with the experimental data.展开更多
We report the novel synthesis of azetidin-2-one derivatives containing aryl sulfonate moiety from the reaction of 2-hydroxy benzaldehyde with p-toluene sulfonyl chloride afforded firstly 2-formylphenyl 4-methylbenzene...We report the novel synthesis of azetidin-2-one derivatives containing aryl sulfonate moiety from the reaction of 2-hydroxy benzaldehyde with p-toluene sulfonyl chloride afforded firstly 2-formylphenyl 4-methylbenzene sulfonate (2). The compound (2) on reaction with p-aminobenzoic acid or 2-aminopyridine gave the corresponding aldimines (3). Furthermore, the aldimines are on reaction with chloroacetyl chloride gives corresponding azetidin-2-ones in good to moderate yield. Among the eight synthesized azetidin-2-ones, five selected compounds have been screened for the an-ti-inflammatory activity, few of them showed good anti-inflammatory activity compared with standard drugs. Anti- microbial activity of all synthesized compounds has been tested and most of the compounds showed good anti-bacterial and anti-fungal activities.展开更多
基金Supported by the National Natural Science Foundation of China (No.20676101) and the Natural Science Foundation of Tianjin University of Science & Technology (No.20050207).
文摘The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic acid,o-chloro-benzoic acid, and m-nitro-benzoic acid in 1-octanol were measured by the polythermal method in the temperature range of 20-50℃. The experimental data were regressed with the. Wilson equation and the λH equation. The experimental results showed that the solubility of the four chemicals in 1-octanol increased significantly with temperature. The results indicate that the molecular structure and interactions affect the solubility significantly.The solubility order of the benzoic acid derivatives is as follows: m-nitro-benzoic acid〉o-chloro-benzoic acid〉 o-amino-benzoic acid〉p-amino-benzoic acid. Both the Wilson equation and λH equation are in good agreement with the experimental data.
文摘We report the novel synthesis of azetidin-2-one derivatives containing aryl sulfonate moiety from the reaction of 2-hydroxy benzaldehyde with p-toluene sulfonyl chloride afforded firstly 2-formylphenyl 4-methylbenzene sulfonate (2). The compound (2) on reaction with p-aminobenzoic acid or 2-aminopyridine gave the corresponding aldimines (3). Furthermore, the aldimines are on reaction with chloroacetyl chloride gives corresponding azetidin-2-ones in good to moderate yield. Among the eight synthesized azetidin-2-ones, five selected compounds have been screened for the an-ti-inflammatory activity, few of them showed good anti-inflammatory activity compared with standard drugs. Anti- microbial activity of all synthesized compounds has been tested and most of the compounds showed good anti-bacterial and anti-fungal activities.