The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the ad-sorbents are regenerated by microbial co...The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the ad-sorbents are regenerated by microbial conversion. p-Complexation adsorbent, Cu(I)-Y, was ob-tained by ion exchanging Y-type zeolite with Cu2+ and then by auto-reduction in helium at 450℃ for 3 h. Dibenzothiophene (DBT) was used as a model compound. The effects of cell concentra-tion, volume of oil phase, the ratio of aqueous phase to adsorbent on DBT desorption by a bac-terium were studied. The amounts of DBT desorbed and 2-HBP produced can be apparently increased with addition of n-octane. BDS activity can be improved by increasing cell concentra-tion and the ratio of water-to-adsorbent. 89% of DBT desorbed from the adsorbents can be converted to 2-HBP within 6 h and almost 100% within 24 h, when the volume ratio of oil-to-water was 1/5 mL/mL, the cell concentration was 60 g·L?1, and the ratio of adsorbent-to-oil was 0.03 g·mL?1. The amount of 2-HBP produced was strongly dependent on the volume ratio of oil-to- water, cell concentration and amount of adsorbent. Adsorption capacity of the regenerated ad-sorbent is 95% that of the fresh one after being desorbed with Pseudomonas delafieldii R-8, washed with n-octane, dried at 100℃ for 24 h and auto-reduced in He.展开更多
In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic...In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.展开更多
The structures of four isomeric forms of the model germylenoid, H2GeLiF. have been examined by ah initio MO theory. The most stable structure is suggested to be the p-complex 1.The other three species. three-membered ...The structures of four isomeric forms of the model germylenoid, H2GeLiF. have been examined by ah initio MO theory. The most stable structure is suggested to be the p-complex 1.The other three species. three-membered ring 2, δ-complex 3 and tetrahedron 4. are also local minima on the potential energy surface. but are higher in energy.展开更多
The structural characteristics of silylenoids, H2SiMX, where M = Li or Na and X = F or Cl, have been studied by ab initio calculations. H2SiMX can be represented as adducts of silylene H2Si with alkali metal halogenid...The structural characteristics of silylenoids, H2SiMX, where M = Li or Na and X = F or Cl, have been studied by ab initio calculations. H2SiMX can be represented as adducts of silylene H2Si with alkali metal halogenides, MX. The associative energies at different calculational levels of various structures of H2SiMX are given. Effects of metallic and haloid atoms on the stability of various structures of H2SiMX are also discussed in this paper.展开更多
The structures of singlet stannylenoid H2SnLiF have been examined by ab initio MO theory. Four equilibrium states and three transition states of isomerization reaction are located. The calculation shows that the p-com...The structures of singlet stannylenoid H2SnLiF have been examined by ab initio MO theory. Four equilibrium states and three transition states of isomerization reaction are located. The calculation shows that the p-complex 1 is the most stable and experimentally detectable. The other three species, three-membered ring 2, o-complex 3 and tetrahedron 4, are also local minima on the potential energy surface, but are higher in energy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.30370046)the State Major Basic Research Development Program of China(Grant No.G2000048004)the National High Technology Research and Development Program of China(Grant No.2002AA213041).
文摘The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the ad-sorbents are regenerated by microbial conversion. p-Complexation adsorbent, Cu(I)-Y, was ob-tained by ion exchanging Y-type zeolite with Cu2+ and then by auto-reduction in helium at 450℃ for 3 h. Dibenzothiophene (DBT) was used as a model compound. The effects of cell concentra-tion, volume of oil phase, the ratio of aqueous phase to adsorbent on DBT desorption by a bac-terium were studied. The amounts of DBT desorbed and 2-HBP produced can be apparently increased with addition of n-octane. BDS activity can be improved by increasing cell concentra-tion and the ratio of water-to-adsorbent. 89% of DBT desorbed from the adsorbents can be converted to 2-HBP within 6 h and almost 100% within 24 h, when the volume ratio of oil-to-water was 1/5 mL/mL, the cell concentration was 60 g·L?1, and the ratio of adsorbent-to-oil was 0.03 g·mL?1. The amount of 2-HBP produced was strongly dependent on the volume ratio of oil-to- water, cell concentration and amount of adsorbent. Adsorption capacity of the regenerated ad-sorbent is 95% that of the fresh one after being desorbed with Pseudomonas delafieldii R-8, washed with n-octane, dried at 100℃ for 24 h and auto-reduced in He.
文摘In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.
文摘The structures of four isomeric forms of the model germylenoid, H2GeLiF. have been examined by ah initio MO theory. The most stable structure is suggested to be the p-complex 1.The other three species. three-membered ring 2, δ-complex 3 and tetrahedron 4. are also local minima on the potential energy surface. but are higher in energy.
基金supported by the National Natural Science Fundation of China.
文摘The structural characteristics of silylenoids, H2SiMX, where M = Li or Na and X = F or Cl, have been studied by ab initio calculations. H2SiMX can be represented as adducts of silylene H2Si with alkali metal halogenides, MX. The associative energies at different calculational levels of various structures of H2SiMX are given. Effects of metallic and haloid atoms on the stability of various structures of H2SiMX are also discussed in this paper.
文摘The structures of singlet stannylenoid H2SnLiF have been examined by ab initio MO theory. Four equilibrium states and three transition states of isomerization reaction are located. The calculation shows that the p-complex 1 is the most stable and experimentally detectable. The other three species, three-membered ring 2, o-complex 3 and tetrahedron 4, are also local minima on the potential energy surface, but are higher in energy.