The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
In the paper, density of states, band structure and electron density difference of Zn1-xCdxO are calculated by first principles, here x varies from 0 to 0.75 at intervals of 0.125, and the band gap obtained from band ...In the paper, density of states, band structure and electron density difference of Zn1-xCdxO are calculated by first principles, here x varies from 0 to 0.75 at intervals of 0.125, and the band gap obtained from band structure changes from 0.968 eV to 0.043 eV. The lattice strain and p-d repulsion theory are used to investigate variation of the band gap, the results obtained show that the variation is mainly due to the lattice tensile strain. The p-d repulsion in Zn1-xCdxO cannot be neglected. In addition, electron density difference can be used to verify the results.展开更多
局部遮阴时,光伏阵列输出的功率-电压曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking,MPPT)算法会失效。提出两步型控制模型:第一步由粒子群算法(particle swarm optimization,PSO)寻找最大功率点,第二步通过电导...局部遮阴时,光伏阵列输出的功率-电压曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking,MPPT)算法会失效。提出两步型控制模型:第一步由粒子群算法(particle swarm optimization,PSO)寻找最大功率点,第二步通过电导增量法(incremental conductance,INC)控制系统稳定输出。此外还研究以下几点:模型的参考曲线更改为光伏阵列功率-占空比(P-D)输出特性曲线(由标准Boost电路调节占空比测得);改进传统PSO算法结构,限制了最大搜索速度;分析模型最适合的粒子数目和粒子搜索顺序。最后在复杂环境下对系统进行仿真和实验。展开更多
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
文摘In the paper, density of states, band structure and electron density difference of Zn1-xCdxO are calculated by first principles, here x varies from 0 to 0.75 at intervals of 0.125, and the band gap obtained from band structure changes from 0.968 eV to 0.043 eV. The lattice strain and p-d repulsion theory are used to investigate variation of the band gap, the results obtained show that the variation is mainly due to the lattice tensile strain. The p-d repulsion in Zn1-xCdxO cannot be neglected. In addition, electron density difference can be used to verify the results.
文摘局部遮阴时,光伏阵列输出的功率-电压曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking,MPPT)算法会失效。提出两步型控制模型:第一步由粒子群算法(particle swarm optimization,PSO)寻找最大功率点,第二步通过电导增量法(incremental conductance,INC)控制系统稳定输出。此外还研究以下几点:模型的参考曲线更改为光伏阵列功率-占空比(P-D)输出特性曲线(由标准Boost电路调节占空比测得);改进传统PSO算法结构,限制了最大搜索速度;分析模型最适合的粒子数目和粒子搜索顺序。最后在复杂环境下对系统进行仿真和实验。