Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can...Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.展开更多
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-...Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.展开更多
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter...Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.展开更多
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst...The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.展开更多
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular...As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.展开更多
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ...The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.展开更多
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop...Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.展开更多
The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too ...The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field.展开更多
The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirm...The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.neg...BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.展开更多
Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fue...Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.展开更多
Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield ...Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.展开更多
BACKGROUND Methanol is a highly toxic,non-potable alcohol.Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol.Recently,alongside the coronavir...BACKGROUND Methanol is a highly toxic,non-potable alcohol.Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol.Recently,alongside the coronavirus disease 2019(COVID-19)pandemic,rumors circulated on social media that consuming alcohol can prevent or cure the virus,leading to a COVID-19 and methanol-induced optic neuropathy(MON)syndemic.AIM To investigate the impact of erythropoietin(EPO)on the outcomes of patients diagnosed with MON.METHODS In this prospective study,105 patients presenting with acute bilateral visual loss secondary to methanol intoxication were enrolled from March to May 2020 at Farabi Eye Hospital.A comprehensive ocular examination was conducted for all participants.Recombinant human EPO and methylprednisolone were administered intravenously to all patients for three consecutive days.RESULTS The mean age of the participants was 39.9 years(±12.6).Ninety-four patients were male and eleven were female.The mean pre-treatment best corrected visual acuity(BCVA)improved from 2.0±0.86 to 1.39±0.69 logarithm of the minimum angle of resolution post-treatment(P<0.001),with significant improvement observed in all age categories and genders(P<0.001).Visual acuity improvement was also significant regardless of whether the patient presented before or after 72 h(P<0.001),and the post-treatment BCVA remained significant at all monthly follow-up visits(P<0.001).CONCLUSION EPO and methylprednisolone therapy have been shown to be effective in improving visual outcomes in patients with MON when administrated within the first month of exposure.Public awareness efforts are necessary to prevent further outbreaks of methanol toxicity in the current COVID-19 era.展开更多
Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properti...Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properties. Apart from van-der-Waals heterostructures,herein, we report a novel nanocomposite with the structure of Pt–Ru bimetallic nanoparticles covalently-bonded onto multi-walled carbon nanotubes (MWCNTs)(Pt–Ru@MWCNT), which have been successfully fabricated via a facile and green synthesis method. It is demonstrated that the Pt–Ru@MWCNT nanocomposite possesses much enhanced electrocatalytic activity with the electrochemical active surface area(ECSA) of 110.4 m^(2)·g^(-1)for Pt towards MOR, which is 2.67 and 4.0 times higher than those of 20wt%commercial Pt@C and Pt-based nanocomposite prepared by other method, due to the improved electron-transfer properties originated from M–O–C covalent bonds. This work provides us a new strategy for the structural design of highly-efficient electrocatalysts in boosting MOR performance.展开更多
Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable comp...Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.展开更多
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect...Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.展开更多
In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion w...In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.展开更多
Two-step conversion of methanol to aromatics via light hydrocarbons can significantly improve the conversion stability compared with direct aromatization of methanol,but it remains a challenge to achieve a high p-xyle...Two-step conversion of methanol to aromatics via light hydrocarbons can significantly improve the conversion stability compared with direct aromatization of methanol,but it remains a challenge to achieve a high p-xylene(PX)selectivity.Herein,silica coating was firstly used to passivate external acid sites of ZSM-5 catalyst for the aromatization of light hydrocarbons by the chemical liquid deposition method.With the increase of SiO_(2) deposition,the density of the external acid sites of the catalyst was decreased from 0.1 to 0.03 mmol·g^(-1),which inhibited the surface secondary reactions and increased the PX/X from 34.6% to 60.0%.In view of the fact that the aromatization process in the second step was partly inhibited as methanol was consumed in advance in the upper methanol-to-light hydrocarbons catalyst layer,part of methanol was directly introduced into the lower aromatization catalyst layer to promote the alkylation process during the aromatization,which decreased the toluene selectivity from 34.5% to 14.3% but increased the xylene selectivity from 40.0%to 55.3%.It was also found that an appropriate external acid density was needed for aromatization catalyst to strengthen the alkylation process and improve the selectivity of xylene under the conditions of methanol introduction.展开更多
基金financial support from National Natural Science Foundation of China(22125202,21932004,22101128)Natural Science Foundation of Jiangsu Province(BK20220033)。
文摘Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.
基金We gratefully acknowledge financial support from the National Nature Science Foundation of China(2177606)PetroChina(Development of methanol coupled light hydrocarbon aromatization catalyst and process technology,2016A-24308).
文摘Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production.
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金supported by the National Natural Science Foundation of China(22162012 and 22202089)the Youth Jinggang Scholars Program in Jiangxi Province([2019]57)+6 种基金the Thousand Talents Plan of Jiangxi Province(jxsq2019201083)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20224ACB213005)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUSTQJBJ2019002)the Research Foundation of Education Bureau of Jiangxi Province of China(GJJ210833)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces(202022)the China Postdoctoral Science Foundation(2021M693893)the Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018)。
文摘Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.
基金financially supported by the National Natural Science Foundation of China (52200076,22169005,52370057)the Growth Project of Young Scientific and Technological Talents in General Colleges and Universities in Guizhou Province ([2022]143)+4 种基金the Science and Technology Foundation of Guizhou Province ([2022]109)the Natural Science Special Foundation of Guizhou University (202017,702775203301)the Natural Science Foundation of Chongqing (CSTB2022NSCQ-BHX0035)the Special Research Assistant Program of Chinese Academy of Sciencethe Research Foundation of Chongqing University of Science and Technology (ckrc2022026)。
文摘The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(22325304,22221003 and 22033007)We acknowledge the Supercomputing Center of USTC,Hefei Advanced Computing Center,Beijing PARATERA Tech Co.,Ltd.,for providing high-performance computing services。
文摘As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.
基金supported by the National Natural Science Foundation of China under grant numbers 22172032,U22A20431 and U19B2003。
文摘The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.
基金the financial support of Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515010940)Shenzhen Natural Science Fund (the Stable Support Plan Program No. 20220809160022001)the Shenzhen Science and Technology Programs (No. ZDSYS20220527171401003, KQTD20190929173914967)。
文摘Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.
基金supported by the National Natural Science Foundation of China (No.51405342)Natural Science Foundation of Tianjin (No.20JCYBJC00050)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.
文摘The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field.
基金supported by the National Natural Science Foundation of China(22138009)the Fundamental Research Funds for the Central Universities of China。
文摘The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
文摘BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.
基金supported by the National Natural Science Foundations of China(22150410340)the Chongqing Science&Technology Commission(catc2018jcyjax0582)。
文摘Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.
基金sponsored by the National Natural Science Foundation of China(21808120,21978148)。
文摘Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.
文摘BACKGROUND Methanol is a highly toxic,non-potable alcohol.Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol.Recently,alongside the coronavirus disease 2019(COVID-19)pandemic,rumors circulated on social media that consuming alcohol can prevent or cure the virus,leading to a COVID-19 and methanol-induced optic neuropathy(MON)syndemic.AIM To investigate the impact of erythropoietin(EPO)on the outcomes of patients diagnosed with MON.METHODS In this prospective study,105 patients presenting with acute bilateral visual loss secondary to methanol intoxication were enrolled from March to May 2020 at Farabi Eye Hospital.A comprehensive ocular examination was conducted for all participants.Recombinant human EPO and methylprednisolone were administered intravenously to all patients for three consecutive days.RESULTS The mean age of the participants was 39.9 years(±12.6).Ninety-four patients were male and eleven were female.The mean pre-treatment best corrected visual acuity(BCVA)improved from 2.0±0.86 to 1.39±0.69 logarithm of the minimum angle of resolution post-treatment(P<0.001),with significant improvement observed in all age categories and genders(P<0.001).Visual acuity improvement was also significant regardless of whether the patient presented before or after 72 h(P<0.001),and the post-treatment BCVA remained significant at all monthly follow-up visits(P<0.001).CONCLUSION EPO and methylprednisolone therapy have been shown to be effective in improving visual outcomes in patients with MON when administrated within the first month of exposure.Public awareness efforts are necessary to prevent further outbreaks of methanol toxicity in the current COVID-19 era.
基金the support from Shanghai QingZhen Test Technology Co.,Ltd.,China (No.880772)Dalian Jin Dian Biotechnology Co.,Ltd.,China (No.880988)+5 种基金Anhui Chromatographic Instrument Co.,Ltd.,China (No.880511)the Key Project of Anhui Provincial Department of Education,China (No.2023AH051634)the Innovative Research Team of Undergraduates,China (Nos.S202110879087 and S202210879085)the Research Funds of Anhui Science and Technology University,China (No.FZ220179)the Foundation of Anhui Science and Technology University,China (No.HCWD202001)the Science and Technology Planning Project of Bengbu City,China (No.2022gx10)。
文摘Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properties. Apart from van-der-Waals heterostructures,herein, we report a novel nanocomposite with the structure of Pt–Ru bimetallic nanoparticles covalently-bonded onto multi-walled carbon nanotubes (MWCNTs)(Pt–Ru@MWCNT), which have been successfully fabricated via a facile and green synthesis method. It is demonstrated that the Pt–Ru@MWCNT nanocomposite possesses much enhanced electrocatalytic activity with the electrochemical active surface area(ECSA) of 110.4 m^(2)·g^(-1)for Pt towards MOR, which is 2.67 and 4.0 times higher than those of 20wt%commercial Pt@C and Pt-based nanocomposite prepared by other method, due to the improved electron-transfer properties originated from M–O–C covalent bonds. This work provides us a new strategy for the structural design of highly-efficient electrocatalysts in boosting MOR performance.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the South Korea grant funded by the Korean government(MSIT)(2021R1A4A2000934,2023R1A2C3004336)+1 种基金The computational part of the work was supported by Department of Chemical and Biomolecular Engineering,Institute of Emergent Materials,Sogang University,via NRF Korea grant 2015M3D3A1A01064929a generous supercomputing time from KISTI。
文摘Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.
基金financial support from the National Natural Science Foundation of China(Nos.21875224,22179121)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)。
文摘Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.
基金The financial support from the National Natural Science Foundation of China(22178089)。
文摘In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.
基金financial support from the National Natural Science Foundation of China(21978191 and 22278292)Key Research and Development Project of Shanxi Province(International Science and Technology Cooperation Program)(201803D421011)。
文摘Two-step conversion of methanol to aromatics via light hydrocarbons can significantly improve the conversion stability compared with direct aromatization of methanol,but it remains a challenge to achieve a high p-xylene(PX)selectivity.Herein,silica coating was firstly used to passivate external acid sites of ZSM-5 catalyst for the aromatization of light hydrocarbons by the chemical liquid deposition method.With the increase of SiO_(2) deposition,the density of the external acid sites of the catalyst was decreased from 0.1 to 0.03 mmol·g^(-1),which inhibited the surface secondary reactions and increased the PX/X from 34.6% to 60.0%.In view of the fact that the aromatization process in the second step was partly inhibited as methanol was consumed in advance in the upper methanol-to-light hydrocarbons catalyst layer,part of methanol was directly introduced into the lower aromatization catalyst layer to promote the alkylation process during the aromatization,which decreased the toluene selectivity from 34.5% to 14.3% but increased the xylene selectivity from 40.0%to 55.3%.It was also found that an appropriate external acid density was needed for aromatization catalyst to strengthen the alkylation process and improve the selectivity of xylene under the conditions of methanol introduction.