We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) an...We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.展开更多
This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotrop...This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.展开更多
This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f...This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.展开更多
In this paper, we prove the existence of solution of the Cauchy problem of a nonlinear degenerate parabolic equation. Moreover some regularizing effects are exhibited.
This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t...This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t) = u^q(1,t), (|ux|^m-1ux)(0,t) = O, and positive initial data u(x,0) = uo(x), where the parameters va, n, p, q 〉0. It is proved that the problem possesses global solutions if and only if p ≤ n and q〈min {n,m(n+1)/m+1}.展开更多
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ...In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.展开更多
In this article, it is shown that there exists a unique viscosity solution of the Cauchy problem for a degenerate parabolic equation with non-divergence form.
This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided ...This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.展开更多
This article discusses the existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations b(u)t - div(a(u, u)) = H(u)(f + divg).
In this paper, we discuss the existence of weak solutions to the initial and boundary value problem of a class of nonlinear degenerate parabolic equations in non-divergence form. Applying the method of parabolic regul...In this paper, we discuss the existence of weak solutions to the initial and boundary value problem of a class of nonlinear degenerate parabolic equations in non-divergence form. Applying the method of parabolic regularization, we prove the existence of weak solutions to the problem. By carefully analyzing the approximate solutions to the problem, we make a series of estimates to the solutions and prove the weak convergence of the approximation solution sequence. Finally we testify the existence of weak solutions to the problem.展开更多
The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the ...The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.展开更多
This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized probl...This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.展开更多
Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations...Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions.展开更多
In this paper, we show the existence of the renormalized solutions and the entropy solutions of a class of strongly degenerate quasilinear parabolic equations.
In this paper, we study the boundary value problem (BVP) for a degenerate parabolic equation. By introducing a proper notion of weak solutions, we prove the uniqueness and existence of weak solutions of the problem....In this paper, we study the boundary value problem (BVP) for a degenerate parabolic equation. By introducing a proper notion of weak solutions, we prove the uniqueness and existence of weak solutions of the problem. The localization of weak solutions is also discussed, which plays a key role in the proof of the uniqueness.展开更多
The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.
基金supported by China NSF(11271388)Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1400430)Basis and Frontier Research Project of Chongqing(cstc2014jcyj A00035)
文摘We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.
基金The project is supported by NNSF of China (10371116)
文摘This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.
基金The NSFC(10371050)and the"985"program of Jilin University.
文摘This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.
文摘In this paper, we prove the existence of solution of the Cauchy problem of a nonlinear degenerate parabolic equation. Moreover some regularizing effects are exhibited.
文摘This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t) = u^q(1,t), (|ux|^m-1ux)(0,t) = O, and positive initial data u(x,0) = uo(x), where the parameters va, n, p, q 〉0. It is proved that the problem possesses global solutions if and only if p ≤ n and q〈min {n,m(n+1)/m+1}.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
文摘This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
基金This work is supported in part by NNSF of China(10571126)in part by Program for New Century Excellent Talents in University
文摘In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.
基金Supported in part by Dalian Nationalities University (20076209)Departmentof Education of Liaoning Province (2009A152)National Natural Science Foundation of China (10471156,10901030)
文摘In this article, it is shown that there exists a unique viscosity solution of the Cauchy problem for a degenerate parabolic equation with non-divergence form.
基金supported by the National Natural Science Foundations of China(10971061)Hunan Provincial Natural Science Foundation of China (09JJ6013)
文摘This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.
基金supported by Science Foundation of Xiamen University of Technology (YKJ08020R)
文摘This article discusses the existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations b(u)t - div(a(u, u)) = H(u)(f + divg).
文摘In this paper, we discuss the existence of weak solutions to the initial and boundary value problem of a class of nonlinear degenerate parabolic equations in non-divergence form. Applying the method of parabolic regularization, we prove the existence of weak solutions to the problem. By carefully analyzing the approximate solutions to the problem, we make a series of estimates to the solutions and prove the weak convergence of the approximation solution sequence. Finally we testify the existence of weak solutions to the problem.
基金Funded by the Scientific Research Foundation for Returned Overseas Chinese Scholars under the State Education Ministry, and the Key Teachers’ Foundation of Chongqing University.
文摘The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.
文摘This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.
基金Project supported by the Youth Foundation of the National Natural Science Foundation of China(No. 10701061)
文摘Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions.
文摘The global existence and finite time blow up of the positive solution for a nonlinear degenerate parabolic equation with non- local source are studied
基金The NSFC (10626024) of ChinaChina Postdoctoral Science Foundation and Graduate Innovation Lab of Jilin University
文摘In this paper, we show the existence of the renormalized solutions and the entropy solutions of a class of strongly degenerate quasilinear parabolic equations.
基金Young Teachers Foundation (420010302318) of Jilin University
文摘In this paper, we study the boundary value problem (BVP) for a degenerate parabolic equation. By introducing a proper notion of weak solutions, we prove the uniqueness and existence of weak solutions of the problem. The localization of weak solutions is also discussed, which plays a key role in the proof of the uniqueness.
基金the Foundations of Returned Overseas Chinese Education Ministry and the Key Teachers Foundation of Chongqing University.
文摘The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.