期刊文献+
共找到426篇文章
< 1 2 22 >
每页显示 20 50 100
Photochemical oxidation mechanism of microcystin-RR by p-n heterojunction Ag/Ag_2O-BiVO_4 被引量:5
1
作者 吴春红 方艳芬 +3 位作者 Araya Hailu Tirusew 向淼淼 黄应平 陈春城 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期192-198,共7页
Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to... Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation. 展开更多
关键词 PHOTOCHEMICAL p-n heterojunction Silver Silver oxide Bismuth orthovanadate Microcystin-RR(MC-RR) Mechanism
下载PDF
Photoelectrochemical cathodic protection of Cu2O/TiO2 p-n heterojunction under visible light
2
作者 TIAN Jing CHEN Zhuoyuan +3 位作者 JING Jiangping FENG Chang SUN Mengmeng LI Weibing 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第5期1517-1531,共15页
The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu 2 O nanoparticles on the surface of TiO 2 nanotubes via anodic oxidation and constant current deposition.Field emission scannin... The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu 2 O nanoparticles on the surface of TiO 2 nanotubes via anodic oxidation and constant current deposition.Field emission scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)analyses showed that Cu 2 O nanoparticles not only deposited on the surface of TiO 2 nanotube array,but also on the wall of TiO 2 nanotubes.The Cu 2 O deposition amount could be adjusted by changing the deposition time.The photoelectrochemical cathodic protection(PECCP)performance of the prepared photoelectrodes for 316L stainless steel(SS)was tested under visible light.The constant current deposition time had a signifi cant eff ect on the PECCP performance of Cu 2 O/TiO 2-X photoelectrodes and Cu 2 O/TiO 2-20 had the best PECCP performance for the coupled 316L SS.This was attributed to the appropriate amount and thickness of Cu 2 O to form p-n heterojunctions with TiO 2,in which separation of the photogenerated carriers was accelerated and transfer of the photogenerated electrons to 316L SS for PECCP was facilitated. 展开更多
关键词 Cu2O/TiO2 p-n heterojunction 316L SS photoelectrochemical cathodic protection
下载PDF
One stone,three birds:up-conversion,photothermal and p-n heterojunction to boost BiOBr:Yb^(3+),Er^(3+)/Cu_(3)Mo_(2)O_(9) full spectrum photodegradation
3
作者 Xintong Yao Dong Zhang +7 位作者 Yupeng Liu Yanzhao Chen Dafeng Zhang Junchang Liu Xue-Yang Ji Hengshuai Li Peiqing Cai Xipeng Pu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第10期119-131,共13页
Broadening spectral response range to realize the full spectrum photocatalysis is crucial to develop photocatalysts with satisfactory light-energy conversion ability.A full-spectrum driven p-n heterojunction photocata... Broadening spectral response range to realize the full spectrum photocatalysis is crucial to develop photocatalysts with satisfactory light-energy conversion ability.A full-spectrum driven p-n heterojunction photocatalytic system was rationally designed through introducing the Er^(3+)/Yb^(3+)co-doped BiOBr with up-conversion effect as the collector of near infrared light and photocatalysts substrate.Meanwhile,Cu_(3)Mo_(2)O_(9) with the photothermal effect as a heat source to accelerate the reaction at the surface through absorbing the near infrared light.The photocatalytic activity of BiOBr:Yb^(3+),Er^(3+)/Cu3Mo2O9 composite was markedly strengthened under visible and near infrared light irradiation,and the BiOBr:Yb^(3+),Er^(3+)/Cu_(3)Mo_(2)O_(9)-5 composite displayed the optimal photodegradation activities for 0.03372 min^(-1) and 0.058 h^(-1),being 2.3-folds and 2.4-folds than that of pure BiOBr:Yb^(3+),Er^(3+)under the visible and near infrared light,respectively.The position of doped ions(Yb^(3+)and Er^(3+))in BiOBr:Yb^(3+),Er^(3+)was determined from the X-ray absorption fine structure spectra.And the reasonable mechanism of p-n heterojunction was proposed base on the results of experimental and density functional theory calculation.This work provides a rational strategy for the design and development of full-spectrum heterojunction photocatalysts with the up-conversion and photothermal effects to increase the photocatalytic performance. 展开更多
关键词 photocatalyst full spectrum p-n heterojunction photothermal effect UP-CONVERSION
原文传递
Monoclinicβ-AgVO_(3) coupled with CdS formed a 1D/1D p-n heterojunction for efficient photocatalytic hydrogen evolution 被引量:2
4
作者 Xuan-Pu Wang Zhi-Liang Jin Xin Li 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1494-1507,共14页
Improving the separation of photogenerated carriers and suppressing the rapid complication of electron-hole pairs are essential ways to improve photocatalytic hydrogen production activity.The high recombination rate o... Improving the separation of photogenerated carriers and suppressing the rapid complication of electron-hole pairs are essential ways to improve photocatalytic hydrogen production activity.The high recombination rate of the photogenerated carriers is an issue encountered when developing CdS as a promising photocatalytic material.This work allowed to accelerate the separation of photogenerated electrons and holes by loading monoclinicβ-AgVO_(3)on hexagonal CdS nanorods to construct a one-dimensional(1D)/1D p-n heterojunction.The introduction of monoclinicβ-AgVO_(3)with a narrow band gap effectively improves the light absorption of CdS,which is conducive to improving the use of visible light.The integrated electric field of the p-n heterojunction can effectively transfer electrons and holes in the direction suitable to hydrogen evolution.The photoluminescence and electrochemical characterization of the catalysts showed that the p-n heterojunction formed after loadingβ-AgVO_(3)greatly improved the separation efficiency of photocarriers.The hydrogen evolution experiments show that the composite catalyst has good photocatalytic hydrogen evolution capability and stability.The composite catalyst with the best photocatalytic performance was obtained by studyingβ-AgVO_(3)with different loadings.The composite catalyst reached 581.5μmol of hydrogen amount within 5 h,which is 3.8 times higher than that of CdS alone and its apparent quantum efficiency reaches8.02%.The present work provides a possible solution for the development of perovskite and the extensiveness of CdS in photocatalytic hydrogen evolution. 展开更多
关键词 PHOTOCATALYSIS Hydrogen evolution p-n heterojunction AgVO_(3)
原文传递
Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved HER
5
作者 Xiaoli Cui Yunmeng Sun Xinxin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期494-497,共4页
MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of ... MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of p-n heterojunction with p-type MoO_(3) can reverse this situation,because inner electronic field in p-n heterojunction can facilitate H^(*) desorption.Based on this hypothesis,p-n heterojunction is built between MoS_(2) and MoO_(3) with polyoxometalate compound as precursor.The obtained MoO_(3)/MoS_(2) exhibits excellent HER activity,which only requires 68 mV to obtain 10 mA/cm^(2).With MoO_(3)/MoS_(2) as cathode material and Zn slice as anode,Zn-H^(+)battery is assembled.Its open circuit voltage achieves 1.11 V with short circuit current 151.4 mA/cm^(2).The peak power density of this Zn-H^(+) battery reaches 47.6 mW/cm^(2).When discharge at 10 mA/cm^(2),the specific capacity and energy density reach 728 mAh/g and 759 Wh/kg.In this process,H_(2) production rate of Zn-H^(+) battery achieves 364μmol/h with Faradic efficiency 97.8%.It realizes H_(2) production and electricity generation simultaneously. 展开更多
关键词 POLYOXOMETALATE p-n heterojunction ELECTROCATALYSIS HER Zn-H~+battery
原文传递
Highly Active Interfacial Sites in SFT-SnO_(2) Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands:Envisioned Theoretically and Experimentally 被引量:1
6
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Faiz Wali Zuhra Tayyab Bin Zhu Naveed Mushtaq Yatao Yang Kashif Khan Peter D.Lund Martin Motola Wei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期384-397,共14页
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h... Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes. 展开更多
关键词 high ionic conductivity interfacial conduction modulated energy band structure p-n heterojunction SEMICONDUCTORS
下载PDF
基于p-n异质结CuO/TiO_(2)复合物高效的载流子分离能力构建超灵敏AFP光电化学分析
7
作者 郑德论 张锐龙 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第8期52-59,共8页
将TiO_(2)纳米粒子与Cu(pta)MOFs复合,通过高温煅烧策略制得CuO/TiO_(2)复合物.在最优实验条件下,基于复合物对可见光更强的吸收利用效率,CuO/TiO_(2)修饰的ITO电极展现出显著的光电化学(PEC)响应信号,其光电流值(59.4μA)分别是单组分T... 将TiO_(2)纳米粒子与Cu(pta)MOFs复合,通过高温煅烧策略制得CuO/TiO_(2)复合物.在最优实验条件下,基于复合物对可见光更强的吸收利用效率,CuO/TiO_(2)修饰的ITO电极展现出显著的光电化学(PEC)响应信号,其光电流值(59.4μA)分别是单组分TiO_(2)和CuO粒子的15.5和7.4倍.线性扫描伏安法(LSV)测试结果证实CuO/TiO_(2)/ITO电极比CuO和TiO_(2)材料具有更大的LSV响应强度.这可归因于获得的薄片层状CuO粒子及其兼有的多孔隙特征促进了光的多重散射/反射效应,同时CuO/TiO_(2)复合材料具有的典型p-n异质结构(能级带隙匹配)大幅促进了光生电荷载流子(e^(-)/h^(+))的分离与转移.选用戊二醛(GA)作为交联手臂分子,通过温和的醛胺反应将壳聚糖(CS)和anti-AFP抗体组装于CuO/TiO_(2)/ITO电极表面,再用牛血清蛋白(BSA)封闭活性位点,构建出PEC传感平台(BSA/anti-AFP/GA-CS/CuO/TiO_(2)/ITO),实现了对不同浓度甲胎蛋白(AFP)的高灵敏检测(检出限达到2.63×10^(-4) ng/mL).制备的传感电极同时展示出良好的稳定性和选择性. 展开更多
关键词 薄片层CuO粒子 CuO/TiO_(2)复合物 p-n异质结 光电化学传感器 AFP检测
下载PDF
A p-n WO_(3)/SnSe_(2) Heterojunction for Efficient Photo-assisted Electrocatalysis of the Oxygen Evolution Reaction 被引量:1
8
作者 Ling Bai Shijie Jia +7 位作者 Yidan Gao Chuan Li Xin Chen Shuang Zhou Junwen Han Fengchun Yang Xin Zhang Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期228-235,共8页
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS... Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy. 展开更多
关键词 active species oxygen evolution reaction photo-assisted electrocatalysis photogenerated charge separation p-n WO_(3)/SnSe_(2)heterojunction
下载PDF
Facile Semiconductor p-n Homojunction Nanowires with Strategic p-Type Doping Engineering Combined with Surface Reconstruction for Biosensing Applications
9
作者 Liuan Li Shi Fang +12 位作者 Wei Chen Yueyue Li Mohammad Fazel Vafadar Danhao Wang Yang Kang Xin Liu Yuanmin Luo Kun Liang Yiping Dang Lei Zhao Songrui Zhao Zongzhi Yin Haiding Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期15-30,共16页
Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-typ... Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering. 展开更多
关键词 p-n GaN nanowires Strategic p-doping Surface decoration Photoelectrochemical sensor Glucose sensing
下载PDF
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
10
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 Electron transport layer p-n homojunction Electron mobility Buried interface Perovskite solar cells
下载PDF
Ingenious Design of Co Al-LDH p-n Heterojunction Based on CuI as Holes Receptor for Photocatalytic Hydrogen Evolution 被引量:8
11
作者 Yue Cao Hongqian Gou +1 位作者 Pengfei Zhu Zhiliang Jin 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第6期79-85,共7页
Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials.Herein,p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-lik... Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials.Herein,p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-like CuI.The introduction of CuI can make CoAl-LDH disperse better,which brings more reaction sites for the hydrogen evolution reaction.Meanwhile,the 2D/3D structure is conducive to the construction of p-n heterojunction between the CoAl-LDH and CuI.The optical and electrochemical properties of the material indicate that the separation and transference of photon-generated carriers are promoted by the p-n heterojunction.The activity of composite catalyst(CI-10)reaches a maximum of 3.59 mmol g^(−1) h^(−1) which is 28.5 times higher than that of CuI.Furthermore,the influence of the amount of CuI and pH value on the hydrogen evolution reaction is explored.Based on the band structures of CoAl-LDH and CuI,the mechanism of photocatalytic reaction of CI-10 is proposed.The p-n heterojunction constructed with the CuI as hole receptor provides a new way to enhance the activity of photocatalytic H_(2) evolution. 展开更多
关键词 CoAl-LDH CUI p-n heterojunction photocatalysis hydrogen production
原文传递
Fabrication of 3D biomimetic composite coating with broadband antireflection, superhydrophilicity, and double p-n heterojunctions 被引量:5
12
作者 Gang Shi Xin Zhang +5 位作者 Jianhua Li Haiyan Zhu Ying Li Liping Zhang Caihua Ni Lifeng Chi 《Nano Research》 SCIE EI CAS CSCD 2017年第7期2377-2385,共9页
The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited we... The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited wet etching and hydrothermal synthesis coupled with chemical oxidation for fabricating a three- dimensional (3D) biomimetic moth-eye coating with ternary materials (polypyrrole nanoparticles, TiO2 nanorods, and Si micropyramids, i.e., PPy/TiOa/Si-p). This coating reduced the reflectivity to 〈4% at wavelengths ranging from 200 to 2,300 nm and exhibited remarkable superhydrophilidty with a low water contact angle of 1.8°. Moreover, the composite coating had double p-n heterojunctions, allowing the high-efficiency separation of photogenerated carriers. The photo- current density of PPy/TiO2/Si-p was more than three times higher than that of TiO2/Si-p at a positive potential of 1.5 V. The proposed method provides a means to enhance solar energy conversion. 展开更多
关键词 biomimetic compositecoating broadband antireflection SUPERHYDROPHILICITY double p-n heterojunctions
原文传递
Fabrication of novel ZnO/MnWO_4 nanocomposites with p-n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability 被引量:4
13
作者 Mahsa Pirhashemi Aziz Habibi-Yangjeh 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1891-1901,共11页
We report, for the first time, binary ZnO/MnW04 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with tex- tural properties... We report, for the first time, binary ZnO/MnW04 nanocomposites with p-n heterojunction fabricated by a simple ultrasonic-calcination route. The phase structure, morphology, and optical along with tex- tural properties were comprehensively characterized. The photocatalytic performance was studied via degradations of rhodamine B, methyl blue and methyl orange (RhB, MB, MO), and fuchsine pollutants under visible-light illumination. The ZnO/MnW04 nanocomposites exhibited better photocatalytic per-formance than their single components and the nanocomposite with 30 wt% MnW04 showed the highest activity. Photocatalytic performance of this nanocomposite is 22.5, 17.7, 26.8, and 23.9 times higher than that of the ZnO sample in degradations of RhB, MB, MO, and fuchsine dyes, respectively. The improved photocatalytic performance was ascribed to the formation ofp-n heterojunction between ZnO and MnW04 with high charge separation efficiency as well as strong visible-light absorption ability. The possible mechanism for the improved photocatalytic performance was proposed. This study revealed that the novel ZnO/MnW04 p-n heterojunction can act as a promising visible-light-active photocatalyst for environmental applications. 展开更多
关键词 ZnO/MnW04 p-n heterojunction Visible-light-active Photocatalyst
原文传递
Layered material GeSe and vertical GeSe/MoS2 p-n heterojunctions 被引量:3
14
作者 Wui Chung Yap Zhengfeng Yang +3 位作者 Mehrshad Mehboudi Jia-An Yan Salvador Barraza-Lopez Wenjuan Zhu 《Nano Research》 SCIE EI CAS CSCD 2018年第1期420-430,共11页
GroupqV monochalcogenides are emerging as a new class of layered materials beyond graphene, transition metal dichalcogenides (TMDCs), and black phosphorus (BP). In this paper, we report experimental and theoretica... GroupqV monochalcogenides are emerging as a new class of layered materials beyond graphene, transition metal dichalcogenides (TMDCs), and black phosphorus (BP). In this paper, we report experimental and theoretical investigations of the band structure and transport properties of GeSe and its heterostructures. We find that GeSe exhibits a markedly anisotropic electronic transport, with maximum conductance along the armchair direction. Density functional theory calculations reveal that the effective mass is 2.7 times larger along the zigzag direction than the armchair direction; this mass anisotropy explains the observed anisotropic conductance. The crystallographic orientation of GeSe is confirmed by angle- resolved polarized Raman measurements, which are further supported by calculated Raman tensors for the orthorhombic structure. Novel GeSeflVIoS2 p-n heterojunctions are fabricated, combining the natural p-type doping in GeSe and n-type doping in MoS2. The temperature dependence of the measured junction current reveals that GeSe and MoS2 have a type-II band alignment with a conduction band offset of N 0.234 eV. The anisotropic conductance of GeSe may enable the development of new electronic and optoelectronic devices, such as high-efficiency thermoelectric devices and plasmonic devices with resonance frequency continuously tunable through light polarization direction. The unique GeSe/MoS2 p-n junctions with type-II alignment may become essential building blocks of vertical tunneling field-effect transistors for low-power applications. The novel p-type layered material GeSe can also be combined with n-type TMDCs to form heterogeneous complementary metal oxide semiconductor (CMOS) circuits. 展开更多
关键词 MONOCHALCOGENIDES germanium selenide anisotropic conductance polarized Raman p-n heterojunction
原文传递
反应型P-N膨胀型阻燃剂的合成及其在棉织物中的应用 被引量:2
15
作者 毋登辉 李欣航 赵培华 《精细化工》 EI CAS CSCD 北大核心 2023年第5期1136-1142,1160,共8页
以三聚氯氰、亚磷酸三乙酯和丙三醇为原料,合成了一种反应型P-N膨胀型阻燃剂三氧代(3-磷酸二乙酯-5-氯-1-三嗪)丙三醇(TTCTG),采用FTIR、^(1)HNMR、^(31)PNMR、TG对其进行了表征。通过极限氧指数(LOI)和垂直燃烧实验、TG、SEM测试了TTCT... 以三聚氯氰、亚磷酸三乙酯和丙三醇为原料,合成了一种反应型P-N膨胀型阻燃剂三氧代(3-磷酸二乙酯-5-氯-1-三嗪)丙三醇(TTCTG),采用FTIR、^(1)HNMR、^(31)PNMR、TG对其进行了表征。通过极限氧指数(LOI)和垂直燃烧实验、TG、SEM测试了TTCTG对棉纤维(CF)的阻燃改性性能。结果表明,TTCTG的热稳定性良好。当TTCTG质量浓度为200 g/L时,阻燃整理后棉织物(TTCTG200-CF)的LOI为27.3%,阻燃等级可达国家标准B1级,同时仍能保持良好的力学性能。TTCTG在284℃便能促进棉织物快速分解成炭,700℃下的残炭率高达48.6%。TTCTG200-CF燃烧后,其表面形成了致密的膨胀炭层,TTCTG200-CF具有良好的阻燃性能。水洗20次后,TTCTG200-CF的阻燃等级仍可达B1级,LOI可达26.4%,TTCTG与棉纤维通过共价键相连而融为一体,赋予棉纤维优良持久的阻燃性能。 展开更多
关键词 p-n膨胀型阻燃剂 反应型 棉纤维 阻燃性能 耐水性能 纺织染整助剂
下载PDF
Fabricating a hollow cuboctahedral structure for N-doped carbon coated p-n heterojunctions towards high-performance photocatalytic organic transformation
16
作者 Hao Gao Liming Sun +3 位作者 Mengge Li Wenwen Zhan Xiaojun Wang Xiguang Han 《Nano Research》 SCIE EI CSCD 2022年第5期4638-4645,共8页
The application of semiconductors-based photocatalysts in organic transformation has been limited by the low light utilization efficiency and the rapid recombination of photo-induced charge carriers.In this paper,we h... The application of semiconductors-based photocatalysts in organic transformation has been limited by the low light utilization efficiency and the rapid recombination of photo-induced charge carriers.In this paper,we have successfully fabricated a hollow cuboctahedral nanostructure(CNNCH),which is composed of N-doped carbon layer and CuO/NiO p-n heterojunctions.The hollow structure in CNNCH can effectively favor the light utilization through the multiple light reflection and scattering.The separation of photo-induced charge carriers can be highly improved by the exitence of charge transfer pathways between the p-n heterojunctions and semiconductor/N-doped carbon layer interfaces.Due to the above advantages,hollow cuboctahedral CNNCH as the photocatalyst has behaved high performance towards the photocatalytic cross-dehydrogenative coupling reaction. 展开更多
关键词 organic transformation p-n heterojunction N-doped carbon semiconductor hollow structure
原文传递
p-n型NiWO_(4)/ZnIn_(2)S_(4)异质结光解水析氢性能
17
作者 闫爱华 高埜 +4 位作者 张晓辉 黄飞 张同洋 张吉旭 赵文学 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2023年第12期74-83,共10页
采用水热/水浴两步法构筑了p-n型NiWO_(4)(NWO)/ZnIn_(2)S_(4)(ZIS)异质结,研究了不同含量的NWO对ZIS物相组分、形貌结构、能带结构、光谱吸收及光解水析氢性能等的影响,并采用一系列表征手段探讨了NWO/ZIS异质结的光催化机理.结果表明... 采用水热/水浴两步法构筑了p-n型NiWO_(4)(NWO)/ZnIn_(2)S_(4)(ZIS)异质结,研究了不同含量的NWO对ZIS物相组分、形貌结构、能带结构、光谱吸收及光解水析氢性能等的影响,并采用一系列表征手段探讨了NWO/ZIS异质结的光催化机理.结果表明,负载NWO后,ZIS物相组分及形貌结构未发生显著变化,两种材料界面接触紧密且分布均匀;在可见光辐照下,NWO/ZIS异质结光解水析氢性能得到了显著提升,其中,最佳样品NWO-35/ZIS析氢速率达到5204.8μmol·g^(-1)·h^(-1),为纯相ZIS(1566.4μmol·g^(-1)·h^(-1))的3.32倍;循环实验结果表明,NWO/ZIS样品具有很好的光稳定性;能带结构和光电子动力学表征结果证实了p-n型异质结内建电场驱动的光生载流子的传输机制. 展开更多
关键词 ZnIn_(2)S_(4) NiWO_(4) p-n型异质结 内建电场 光解水析氢
下载PDF
Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting 被引量:15
18
作者 Hui Yang Joeseph Bright +5 位作者 Sujan Kasani Peng Zheng Terence Musho Banglin Chen Ling Huang Nianqiang Wu 《Nano Research》 SCIE EI CAS CSCD 2019年第3期643-650,共8页
This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The... This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core-shell n anorod array is formed by coati ng an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core-shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p-n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electr ons and holes out of the TiO2 nano rods. In additi on, the MOF coati ng sign ificantly improves the efficie ncy of charge in jecti on at the photoanode/electrolyte interface. Introduction of Co(lll) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm^2 at 1.23 V (vs. RHE), which is ~ 2.7 times the photocurrent achieved with bare T1O2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm^2. 展开更多
关键词 METAL-ORGANIC framework WATER-SPLITTING p-n junction PHOTOANODE titanium dioxide
原文传递
Novel Cu_3P/g-C_3N_4 p-n heterojunction photocatalysts for solar hydrogen generation 被引量:10
19
作者 Zhixiao Qin Menglong Wang +1 位作者 Rui Li Yubin Chen 《Science China Materials》 SCIE EI CSCD 2018年第6期861-868,共8页
Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time tha... Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time that p-type copper phosphide(Cu3P) coupled with n-type graphitic carbon nitride(g-C3N4) forms a p-n junction to accelerate charge separation and transfer for enhanced photocatalytic activity.The optimized Cu3P/g-C3N4 p-n heterojunction photocatalyst exhibits 95 times higher activity than bare g-C3N4, with an apparent quantum efficiency of 2.6% at 420 nm. A detail analysis of the reaction mechanism by photoluminescence,surface photovoltaics and electrochemical measurements revealed that the improved photocatalytic activity can be ascribed to efficient separation of photo-induced charge carriers. This work demonstrates that p-n junction structure is a useful strategy for developing efficient heterostructured photocatalysts. 展开更多
关键词 PHOTOCATALYSIS copper phosphide p-n junction HETEROSTRUCTURE hydrogen production
原文传递
NiO/β-Ga_(2)O_(3)heterojunction diodes with ultra-low leakage current below 10^(-10)A and high thermostability
20
作者 黄义 杨稳 +5 位作者 王琦 高升 陈伟中 唐孝生 张红升 刘斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期530-534,共5页
The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni onβ-Ga_(2)O_(3)to form NiO/β-Ga_(2)O_(3)p-n heterojunction diodes(HJDs).The NiO/β-Ga_(2)O_(3)HJDs exhibit excellent electrostatic properties,with a h... The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni onβ-Ga_(2)O_(3)to form NiO/β-Ga_(2)O_(3)p-n heterojunction diodes(HJDs).The NiO/β-Ga_(2)O_(3)HJDs exhibit excellent electrostatic properties,with a high breakdown voltage of 465 V,a specific on-resistance(Ron,sp)of 3.39 mΩ·cm^(2),and a turn-on voltage(V on)of 1.85 V,yielding a static Baliga's figure of merit(FOM)of 256 MW/cm^(2).Also,the HJDs have a low turn-on voltage,which reduces conduction loss dramatically,and a rectification ratio of up to 108.Meanwhile,the HJDs'reverse leakage current is essentially unaffected at temperatures below 170?C,and their leakage level may be controlled below 10^(-10)A.This indicates that p-NiO/β-Ga_(2)O_(3)HJDs with good thermal stability and high-temperature operating ability can be a good option for high-performanceβ-Ga_(2)O_(3)power devices. 展开更多
关键词 NiO/β-Ga_(2)O_(3)p-n heterojunction diodes Baliga's figure of merit reverse leakage current β-Ga_(2)O_(3)power devices
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部