In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning elect...In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m^2·g^(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g^(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasm...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and temperature-programmed reduction (TPR). Results show that the titania structure has favorable influence on physio-chemical and catalytic properties of Ni/TiO2 catalysts. Compared to commercial Raney nickel, the catalytic activity of Ni/TiO2 catalyst is much superior, irrespective of the titania structure. The catalytic activity of anatase titania supported nickel catalyst Ni/TiO2(A) is higher than that of rutile titania supported nickel catalyst Ni/TiO2(R), possibly because the reduction of nickel oxide to metallic nickel for Ni/TiO2(A) is easier than that for Ni/TiO2(R) at similar reaction conditions.展开更多
Direct electrochemical reduction ofp-nitrophenol (PNP) was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE). The cathodic peak ...Direct electrochemical reduction ofp-nitrophenol (PNP) was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE). The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode (CPE). The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP. The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate, the buffer pH, the substrate concentration were optimized. The electrochemical parameters were further calculated with the results of the electron transfer number (n), the charge-transfer coefficient (α) and the surface concentration (Гr) as 1.76, 0.37 and 2.47 × 10^-9 mol/cm^2, respectively, for the selected reductive peak. The results indicated that PNP showed an irreversible adsorption-controlled electrode process on the CILE.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
Synergetic effects for p-nitrophenol degradation were observed in the ozonation with ultrasonic enhancement. The enhancements of removal rate for p-nitrophenol and TOC were around 116% and 294% respectively in compari...Synergetic effects for p-nitrophenol degradation were observed in the ozonation with ultrasonic enhancement. The enhancements of removal rate for p-nitrophenol and TOC were around 116% and 294% respectively in comparison with the individual ultrasound and ozonation systems. The synergetic phenomenon is attributed to two physicochemical mechanisms: (1) Ultrasound decomposes ozone causing augmentation of the activity of free radicals; (2) Ultrasonic wave increased the concen- tration of O3 in solution because of ultrasonic dispersion.展开更多
Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was aroun...Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was around 123% and 278%, respectively. The possible contributions for the synergetic effects were the electrochemically regeneration of ferric ion and the role of the oxygen that formed on the anode.展开更多
The process of decomposing p-nitrophenol (PNP) with power ultrasound requires strict control of acoustic and electric conditions. In this study, the conditions, including acoustic power and acoustic intensity, but n...The process of decomposing p-nitrophenol (PNP) with power ultrasound requires strict control of acoustic and electric conditions. In this study, the conditions, including acoustic power and acoustic intensity, but not ultrasonic frequency, were controlled strictly at constant levels. The absorbency and the COD concentrations of the samples were measured in order to show the variation of the sample concentration. The results show significant differences in the trend of the solution degradation rate as acoustic power increases after the PNP solution (with a concentration of ll4 mg/L and a pH value of 5.4) is irradiated for 60 min with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1130.0 kHz. The degradation rate of the solution increases with time and acoustic power (acoustic intensity). On the other hand, the degradation rate of the solution is distinctly dependent on frequency when the acoustic power and intensity are strictly controlled and maintained at constant levels, The degradation rate of the PNP solution declines with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz; the COD concentration, on the contrary, increase.展开更多
Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed dischar...Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed discharge plasma(PDP) can oxidize and mineralize pollutants very efficiently,but high energy consumption restricts its application for industrial wastewater treatment.A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed,in which peroxydisulfate(PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals,including sulfate radicals and hydroxyl radicals,leading to a higher oxidation capacity for the PDP system.The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface.An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol(PNP).An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1,but the performance enhancement was no longer obvious at a dosage of more than 80:1.Under an applied voltage of 20 kV and a gas discharge gap of 2 mm,the degradation efficiency and energy efficiency of the PNP reached 90.7%and45.0 mg kWh^(-1) for the plasma/PDS system,respectively,which was 34%and 18.0 mg kWh^(-1)higher than for the discharge plasma treatment alone.Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.展开更多
A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC ...A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.展开更多
Ozonlysis in the treatment of p-nitrophenol solution was studied in this paper. The results indicated that the decomposition of pnitrophenol was accelerated as the gas flow rate or pH value increased. When gaseous ozo...Ozonlysis in the treatment of p-nitrophenol solution was studied in this paper. The results indicated that the decomposition of pnitrophenol was accelerated as the gas flow rate or pH value increased. When gaseous ozone concentration was 20.11 mg/L and pH was 3, after 24 m in reaction, the removal rate of p-nitrophenol reached 73.04%, 86. 11%, 91.71% and 95% at the gas flow rate of 32, 40, 48 and 56 ml/min respectively. And when pH was 3, 4, 5, 6, the decomposition rate was 66.38%, 82.09%, 90.46%, 97.50% after a 20 min reaction respectively. It was mainly O3 molecule that took part in the decomposition when pH was 3. The main intermediates during the decomposition include catechol, o-benzoquinone, hydroquinone, p-benzoquinone, phenol, fumaric acid, maleic acid, oxalic acid and formic acid. The decomposition mechanism of p-nitrophenol was also discussed.展开更多
Heptakis(2, 3, 6-tri-o-n-butyl)- β-cyclodextrin(TB- β-CD) has been found to form an inclusion compound with p-nitrophenol in heptane. The stability constent of the inclusion compound of p-nitrophenol with TB-β-CD i...Heptakis(2, 3, 6-tri-o-n-butyl)- β-cyclodextrin(TB- β-CD) has been found to form an inclusion compound with p-nitrophenol in heptane. The stability constent of the inclusion compound of p-nitrophenol with TB-β-CD in heptane is an order of magnitude greater than that in water.展开更多
Para-nitrophenol adsorbed on bone char synthesized from cow bones has been studied. The Langmuir Freundlich and Sips models were applied to the equilibrium data to describe the adsorption process. The Langmuir model b...Para-nitrophenol adsorbed on bone char synthesized from cow bones has been studied. The Langmuir Freundlich and Sips models were applied to the equilibrium data to describe the adsorption process. The Langmuir model best described the adsorption process with R^2 = 0.919; and maximum adsorption capacity, qmax of 365.76 mg/g. Batch kinetic studies conformed to pseudo-second-order indicating that several mechanisms may be involved in the process and gave a value of 2.5×10^4 g/mg/min for the rate constant for the sorption ofp-nitrophenol on bone char. The values of thermodynamic parameters, free energy ≈ -22.0 kJ/mol, enthalpy -20.2 kJ/mol and entropy 5.34 J/K mol for the adsorption of p-nitrophenol on bone char showed that the adsorption was spontaneous and exothermic.展开更多
In this work, we evaluated the quality of paracetamol generic tablets while seeking its two main impurities namely 4-para-aminophenol (4-AP) and 4-para-nitrophenol (4-NP) which have nephrotoxic and teratogenic propert...In this work, we evaluated the quality of paracetamol generic tablets while seeking its two main impurities namely 4-para-aminophenol (4-AP) and 4-para-nitrophenol (4-NP) which have nephrotoxic and teratogenic properties. Ninety-four (94) samples were collected at various levels of the medicine supply chain and illegal markets in Benin for quality control tests such as visual inspection, pharmacotechnical tests as mass variation, disintegration test, dissolution test, followed by HPLC UV-Vis identification and assay of paracetamol, 4-AP and 4-NP. The analytes were separated on C18 Lichrocart column (250 mm × 4.0 mm i.d, 5 μm);the mobile phase was MeOH:10 mM ammonium acetate buffer pH 6.8 (35:65) pumped at a flow rate of 1 ml/min. The detection was done at 245 nm. Analysis of our results shows that 77.7% of the samples did not comply with the visual inspection test requirements, 2.1% did not pass the mass variation test, 24.3% of the sample batches didn’t comply with the disintegration test requirements. In addition none of these uncomply batches passed the dissolution test, even if the identification test indicated that all samples contained paracetamol. None contained 4-NP (acceptance limit < 0.05% m/m;BP), while 3 of 94 samples contained 4-AP but within acceptance limit (4-AP < 0.1% m/m;BP). As for the paracetamol assay, 80.9% complied with the specifications of the pharmacopoeias taken as reference (90% - 110%;USP). Further, broader studies should be conducted according to the same rules of good practice for a more comprehensive analysis of the situation. Generally the quality control of paracetamol in most African countries, particularly in Benin, is based on pharmacotechnical tests and paracetamol assay. This work, in addition to the usual tests, showed the importance to search for paracetamol and other drugs’ impurities during their routine quality control.展开更多
The safety and toxicity of chemicals given first to animals and finally to humans are generally estimated with a method of safe coefficient, which is scientifically a way lack of grounds. To make a change of the old m...The safety and toxicity of chemicals given first to animals and finally to humans are generally estimated with a method of safe coefficient, which is scientifically a way lack of grounds. To make a change of the old method, we designed a Physiologically Based Pharmacokinetics Medel for the estimate of safety and toxicity of chemicais. As an example,p-nitrophenol sodium (PNP-Na) is used in the research work. Studies of the PNP-Na pharmacokinetics in bodies of rat as well as humans are made, and possibilities of making use of the Model in the estimate of safety and toxicity of chemicals are discussed.展开更多
The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption ...The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.展开更多
This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa...This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.展开更多
Alloys based on non-noble metals could be the next generation of high-performance catalysts for many chemical reactions. However, precisely composition controlled synthesis of non-noble alloys remains a significant ch...Alloys based on non-noble metals could be the next generation of high-performance catalysts for many chemical reactions. However, precisely composition controlled synthesis of non-noble alloys remains a significant challenge. In this work, we report a simple synthesis of Cu_(0.5)Ni_(0.5) alloys without any component segregation. Its success relies on the use of Cu–Ni oxalate precursors, which are chelated in the proximity by oxalate ligands. One of the attractive features for the oxalate routes of catalyst preparation is that no classical support material is needed. The actual component ratios of the obtained Cu_(0.5)Ni_(0.5) alloy are consistent with the initial ratio. Cu_(0.5)Ni_(0.5) alloy shows a higher catalytic activity than pure Cu and Ni catalysts in the reduction of p-nitrophenol(4-NP) to p-aminophenol(4-AP) by sodium borohydride(NaBH4) in an aqueous solution, and the performance depends strongly on the strong interaction between Cu and Ni. The findings reported here are highly helpful to understand the relationship between the synergistic effects in alloys and their catalytic performance, and therefore could provide appropriate strategies to obtain desirable catalysts with improved activity in various catalytic applications.展开更多
The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a ...The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.展开更多
Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diff...Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) Electrochemical investigations showed that the electrode of the thin film exhibited higher electrocatalytic activity in the reaction of p-nitrophenol (PNP) reduction. FT-IR analysis indicated that p-aminophenol (PAP) was synthesized after two step reduction of PNP on nano-crystalline tungsten carbide thin film electrode.展开更多
A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (P...A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (PNP) is detected by differential pulse voltammetry (DPV), which can be oxidized at +1.02 V (vs. Ag/AgCl) on bare glass carbon electrode (GCE). The conditions for enzymatic reaction and electrochemical detection were studied. According to this method, ALP can be detected with a detection limit of 2.8102 mU/L and a linear range of 4.0102 ~ 1.0106 mU/L.展开更多
基金Supported by the National Natural Science Foundation of China(No.21676133)the Natural Science Foundation of Fujian Province(2014J01051)
文摘In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m^2·g^(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g^(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.
基金Supported by the National Basic Research Program (No.2003CB615702) and the National Natural Science Foundation of Chin(No.20436030).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and temperature-programmed reduction (TPR). Results show that the titania structure has favorable influence on physio-chemical and catalytic properties of Ni/TiO2 catalysts. Compared to commercial Raney nickel, the catalytic activity of Ni/TiO2 catalyst is much superior, irrespective of the titania structure. The catalytic activity of anatase titania supported nickel catalyst Ni/TiO2(A) is higher than that of rutile titania supported nickel catalyst Ni/TiO2(R), possibly because the reduction of nickel oxide to metallic nickel for Ni/TiO2(A) is easier than that for Ni/TiO2(R) at similar reaction conditions.
基金the National Natural Science Foundation of China(Nos.20405008,20635020)
文摘Direct electrochemical reduction ofp-nitrophenol (PNP) was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE). The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode (CPE). The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP. The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate, the buffer pH, the substrate concentration were optimized. The electrochemical parameters were further calculated with the results of the electron transfer number (n), the charge-transfer coefficient (α) and the surface concentration (Гr) as 1.76, 0.37 and 2.47 × 10^-9 mol/cm^2, respectively, for the selected reductive peak. The results indicated that PNP showed an irreversible adsorption-controlled electrode process on the CILE.
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
文摘Synergetic effects for p-nitrophenol degradation were observed in the ozonation with ultrasonic enhancement. The enhancements of removal rate for p-nitrophenol and TOC were around 116% and 294% respectively in comparison with the individual ultrasound and ozonation systems. The synergetic phenomenon is attributed to two physicochemical mechanisms: (1) Ultrasound decomposes ozone causing augmentation of the activity of free radicals; (2) Ultrasonic wave increased the concen- tration of O3 in solution because of ultrasonic dispersion.
文摘Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was around 123% and 278%, respectively. The possible contributions for the synergetic effects were the electrochemically regeneration of ferric ion and the role of the oxygen that formed on the anode.
基金supported by the National Natural Science Foundation of China (Grant No. 10974044)the Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2010490911)the Fundamental Research Funds for the Central Universities (Grant No. 2009B31514)
文摘The process of decomposing p-nitrophenol (PNP) with power ultrasound requires strict control of acoustic and electric conditions. In this study, the conditions, including acoustic power and acoustic intensity, but not ultrasonic frequency, were controlled strictly at constant levels. The absorbency and the COD concentrations of the samples were measured in order to show the variation of the sample concentration. The results show significant differences in the trend of the solution degradation rate as acoustic power increases after the PNP solution (with a concentration of ll4 mg/L and a pH value of 5.4) is irradiated for 60 min with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1130.0 kHz. The degradation rate of the solution increases with time and acoustic power (acoustic intensity). On the other hand, the degradation rate of the solution is distinctly dependent on frequency when the acoustic power and intensity are strictly controlled and maintained at constant levels, The degradation rate of the PNP solution declines with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz; the COD concentration, on the contrary, increase.
基金supported by National Natural Science Foundation of China(Grant No.21577011)the Fundamental Research Funds for the Central Universities(Grant No. DUT15QY23)
文摘Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed discharge plasma(PDP) can oxidize and mineralize pollutants very efficiently,but high energy consumption restricts its application for industrial wastewater treatment.A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed,in which peroxydisulfate(PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals,including sulfate radicals and hydroxyl radicals,leading to a higher oxidation capacity for the PDP system.The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface.An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol(PNP).An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1,but the performance enhancement was no longer obvious at a dosage of more than 80:1.Under an applied voltage of 20 kV and a gas discharge gap of 2 mm,the degradation efficiency and energy efficiency of the PNP reached 90.7%and45.0 mg kWh^(-1) for the plasma/PDS system,respectively,which was 34%and 18.0 mg kWh^(-1)higher than for the discharge plasma treatment alone.Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.
文摘A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.
文摘Ozonlysis in the treatment of p-nitrophenol solution was studied in this paper. The results indicated that the decomposition of pnitrophenol was accelerated as the gas flow rate or pH value increased. When gaseous ozone concentration was 20.11 mg/L and pH was 3, after 24 m in reaction, the removal rate of p-nitrophenol reached 73.04%, 86. 11%, 91.71% and 95% at the gas flow rate of 32, 40, 48 and 56 ml/min respectively. And when pH was 3, 4, 5, 6, the decomposition rate was 66.38%, 82.09%, 90.46%, 97.50% after a 20 min reaction respectively. It was mainly O3 molecule that took part in the decomposition when pH was 3. The main intermediates during the decomposition include catechol, o-benzoquinone, hydroquinone, p-benzoquinone, phenol, fumaric acid, maleic acid, oxalic acid and formic acid. The decomposition mechanism of p-nitrophenol was also discussed.
文摘Heptakis(2, 3, 6-tri-o-n-butyl)- β-cyclodextrin(TB- β-CD) has been found to form an inclusion compound with p-nitrophenol in heptane. The stability constent of the inclusion compound of p-nitrophenol with TB-β-CD in heptane is an order of magnitude greater than that in water.
文摘Para-nitrophenol adsorbed on bone char synthesized from cow bones has been studied. The Langmuir Freundlich and Sips models were applied to the equilibrium data to describe the adsorption process. The Langmuir model best described the adsorption process with R^2 = 0.919; and maximum adsorption capacity, qmax of 365.76 mg/g. Batch kinetic studies conformed to pseudo-second-order indicating that several mechanisms may be involved in the process and gave a value of 2.5×10^4 g/mg/min for the rate constant for the sorption ofp-nitrophenol on bone char. The values of thermodynamic parameters, free energy ≈ -22.0 kJ/mol, enthalpy -20.2 kJ/mol and entropy 5.34 J/K mol for the adsorption of p-nitrophenol on bone char showed that the adsorption was spontaneous and exothermic.
文摘In this work, we evaluated the quality of paracetamol generic tablets while seeking its two main impurities namely 4-para-aminophenol (4-AP) and 4-para-nitrophenol (4-NP) which have nephrotoxic and teratogenic properties. Ninety-four (94) samples were collected at various levels of the medicine supply chain and illegal markets in Benin for quality control tests such as visual inspection, pharmacotechnical tests as mass variation, disintegration test, dissolution test, followed by HPLC UV-Vis identification and assay of paracetamol, 4-AP and 4-NP. The analytes were separated on C18 Lichrocart column (250 mm × 4.0 mm i.d, 5 μm);the mobile phase was MeOH:10 mM ammonium acetate buffer pH 6.8 (35:65) pumped at a flow rate of 1 ml/min. The detection was done at 245 nm. Analysis of our results shows that 77.7% of the samples did not comply with the visual inspection test requirements, 2.1% did not pass the mass variation test, 24.3% of the sample batches didn’t comply with the disintegration test requirements. In addition none of these uncomply batches passed the dissolution test, even if the identification test indicated that all samples contained paracetamol. None contained 4-NP (acceptance limit < 0.05% m/m;BP), while 3 of 94 samples contained 4-AP but within acceptance limit (4-AP < 0.1% m/m;BP). As for the paracetamol assay, 80.9% complied with the specifications of the pharmacopoeias taken as reference (90% - 110%;USP). Further, broader studies should be conducted according to the same rules of good practice for a more comprehensive analysis of the situation. Generally the quality control of paracetamol in most African countries, particularly in Benin, is based on pharmacotechnical tests and paracetamol assay. This work, in addition to the usual tests, showed the importance to search for paracetamol and other drugs’ impurities during their routine quality control.
文摘The safety and toxicity of chemicals given first to animals and finally to humans are generally estimated with a method of safe coefficient, which is scientifically a way lack of grounds. To make a change of the old method, we designed a Physiologically Based Pharmacokinetics Medel for the estimate of safety and toxicity of chemicais. As an example,p-nitrophenol sodium (PNP-Na) is used in the research work. Studies of the PNP-Na pharmacokinetics in bodies of rat as well as humans are made, and possibilities of making use of the Model in the estimate of safety and toxicity of chemicals are discussed.
基金TheNationalNaturalScienceFoundationofChina (No .2 97770 0 5 ) andtheNationalScienceFoundationofZhejiangProvince (No .RC990 32 )
文摘The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.
文摘This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.
基金financially supported by NNSFC(No.21025104 and 21271171)
文摘Alloys based on non-noble metals could be the next generation of high-performance catalysts for many chemical reactions. However, precisely composition controlled synthesis of non-noble alloys remains a significant challenge. In this work, we report a simple synthesis of Cu_(0.5)Ni_(0.5) alloys without any component segregation. Its success relies on the use of Cu–Ni oxalate precursors, which are chelated in the proximity by oxalate ligands. One of the attractive features for the oxalate routes of catalyst preparation is that no classical support material is needed. The actual component ratios of the obtained Cu_(0.5)Ni_(0.5) alloy are consistent with the initial ratio. Cu_(0.5)Ni_(0.5) alloy shows a higher catalytic activity than pure Cu and Ni catalysts in the reduction of p-nitrophenol(4-NP) to p-aminophenol(4-AP) by sodium borohydride(NaBH4) in an aqueous solution, and the performance depends strongly on the strong interaction between Cu and Ni. The findings reported here are highly helpful to understand the relationship between the synergistic effects in alloys and their catalytic performance, and therefore could provide appropriate strategies to obtain desirable catalysts with improved activity in various catalytic applications.
文摘The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.
基金supported by the National Natural Science Foundation of China(No.20276069,20476097)
文摘Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) Electrochemical investigations showed that the electrode of the thin film exhibited higher electrocatalytic activity in the reaction of p-nitrophenol (PNP) reduction. FT-IR analysis indicated that p-aminophenol (PAP) was synthesized after two step reduction of PNP on nano-crystalline tungsten carbide thin film electrode.
基金The work was supported by the National Natural Science Foundation of China(Grant No.20075013)the Natural Science Foundation of Shandong Province(Grant No.Y98B06025).
文摘A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (PNP) is detected by differential pulse voltammetry (DPV), which can be oxidized at +1.02 V (vs. Ag/AgCl) on bare glass carbon electrode (GCE). The conditions for enzymatic reaction and electrochemical detection were studied. According to this method, ALP can be detected with a detection limit of 2.8102 mU/L and a linear range of 4.0102 ~ 1.0106 mU/L.