A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder...In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder inequality,and the Minkowski inequality in the setting of dual complex numbers.Second,we define the p-norm of a dual complex vector,which is a nonnegative dual number,and show some related properties.Third,we study the properties of eigenvalues of unitary matrices and unitary triangulation of arbitrary dual complex matrices.In particular,we introduce the operator norm of dual complex matrices induced by the p-norm of dual complex vectors,and give expressions of three important operator norms of dual complex matrices.展开更多
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金the National Natural Science Foundation of China(Grant No.11871051).
文摘In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder inequality,and the Minkowski inequality in the setting of dual complex numbers.Second,we define the p-norm of a dual complex vector,which is a nonnegative dual number,and show some related properties.Third,we study the properties of eigenvalues of unitary matrices and unitary triangulation of arbitrary dual complex matrices.In particular,we introduce the operator norm of dual complex matrices induced by the p-norm of dual complex vectors,and give expressions of three important operator norms of dual complex matrices.