The silicon photomultiplier(SiPM) with epitaxial quenching resistor(EQR) is an emerging and developing technology that has recently attracted the interest from the research community. It has characteristics of a conti...The silicon photomultiplier(SiPM) with epitaxial quenching resistor(EQR) is an emerging and developing technology that has recently attracted the interest from the research community. It has characteristics of a continuous low-resistance cap layer and integrated quenching resisters in epitaxial silicon layer, which makes it possible to increase microcell density or reduce microcell size, thus obtaining large dynamic range and high photon detection efficiency(PDE) simultaneously. Results published show that the EQR SiPM with N-on-P diode configuration had relatively low PDE at peak wavelength of 480 nm as 16%. This paper reported the EQR SiPM with P-on-N diode configuration having active area of 3 × 3 mm^2 and cell density of 10,000/mm^2(total 90,000 pixels). It was characterized with gain of 2E5, dark count rate of 7 MHz, crosstalk of 7%, dynamic range of 85,000 pixels, overall recovery time of 32 ns at room temperature and over-voltage of 3.5 V. The improved PDE at peak wavelength of 420 nm was 30%.展开更多
p-on-n结构的碲镉汞红外探测器具有长的少子寿命、低暗电流、高R;A值等优点,是高温器件、长波甚长波器件发展的重要器件结构。而国内还鲜有砷注入掺杂p-on-n长波HgCdTe探测器的相关报道,为了满足军事、航天等领域对高性能长波探测器迫...p-on-n结构的碲镉汞红外探测器具有长的少子寿命、低暗电流、高R;A值等优点,是高温器件、长波甚长波器件发展的重要器件结构。而国内还鲜有砷注入掺杂p-on-n长波HgCdTe探测器的相关报道,为了满足军事、航天等领域对高性能长波探测器迫切的应用需求,针对As离子注入的长波p-on-n碲镉汞红外探测器退火工艺技术进行研究。采用二次离子质谱(SIMS)仪分析注入及退火后As离子浓度分布情况,使用半导体参数测试仪表征pn结的I-V特性。研究结果表明,在富汞0.5 h 430℃+20 h 240℃条件下,实现As激活,成功制备As注入长波15μm 640×512的p-on-n碲镉汞红外焦平面器件,器件有效像元率大于99.7%。该研究对长波甚长波碲镉汞p-on-n焦平面器件的制备具有重要意义。展开更多
基金supported by the National Natural Science Foundation of China(Nos.61534005,11475025 and 11375029)
文摘The silicon photomultiplier(SiPM) with epitaxial quenching resistor(EQR) is an emerging and developing technology that has recently attracted the interest from the research community. It has characteristics of a continuous low-resistance cap layer and integrated quenching resisters in epitaxial silicon layer, which makes it possible to increase microcell density or reduce microcell size, thus obtaining large dynamic range and high photon detection efficiency(PDE) simultaneously. Results published show that the EQR SiPM with N-on-P diode configuration had relatively low PDE at peak wavelength of 480 nm as 16%. This paper reported the EQR SiPM with P-on-N diode configuration having active area of 3 × 3 mm^2 and cell density of 10,000/mm^2(total 90,000 pixels). It was characterized with gain of 2E5, dark count rate of 7 MHz, crosstalk of 7%, dynamic range of 85,000 pixels, overall recovery time of 32 ns at room temperature and over-voltage of 3.5 V. The improved PDE at peak wavelength of 420 nm was 30%.
文摘p-on-n结构的碲镉汞红外探测器具有长的少子寿命、低暗电流、高R;A值等优点,是高温器件、长波甚长波器件发展的重要器件结构。而国内还鲜有砷注入掺杂p-on-n长波HgCdTe探测器的相关报道,为了满足军事、航天等领域对高性能长波探测器迫切的应用需求,针对As离子注入的长波p-on-n碲镉汞红外探测器退火工艺技术进行研究。采用二次离子质谱(SIMS)仪分析注入及退火后As离子浓度分布情况,使用半导体参数测试仪表征pn结的I-V特性。研究结果表明,在富汞0.5 h 430℃+20 h 240℃条件下,实现As激活,成功制备As注入长波15μm 640×512的p-on-n碲镉汞红外焦平面器件,器件有效像元率大于99.7%。该研究对长波甚长波碲镉汞p-on-n焦平面器件的制备具有重要意义。