The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran...The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.展开更多
The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interfa...The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3).展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely contr...The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely controlled,and the acid sites on its outer surface were passivated by steam-assisted crystallization method,so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite.The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO_(x)metal oxides.The para-selectivity of p-xylene reached 76.2%at reaction temperature of 320℃,pressure of 3.0 MPa,and a flow rate of 2400 mL g^(-1)h^(-1)with an H_(2)/CO_(2) molar ratio of 3/1.Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite,which is conducive to the formation of p-xylene.Moreover,the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene.The reaction mechanism of CO_(2) hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory.The results showed that the CO_(2) to p-xylene followed a methanol-mediated route over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalysts.In addition,the catalyst showed no significant deactivation in the 100 h stability test.This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO_(2)hydrogenation.展开更多
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter...Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme...Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.展开更多
During the liquid-phase oxidation of p-xylene,over-oxidation of reactant,intermediates and solvent to carbon dioxide and carbon monoxide is generally known as the burning side reaction.Batch and semi-continuous experi...During the liquid-phase oxidation of p-xylene,over-oxidation of reactant,intermediates and solvent to carbon dioxide and carbon monoxide is generally known as the burning side reaction.Batch and semi-continuous experiments were carried out,and the experimental data of the burning side reaction were analyzed and reported in this paper.The results showed that the rates of burning side reactions were proportional to the rates of the main reaction,but decreased with the increasing concentrations of reactant and intermediates.The inter-stimulative and competitive relationship between the burning side reaction and the main reaction was confirmed,and the rates of the burning side reaction could be described with some key indexes of the main reaction.According to the mechanism of the side reactions and the kinetics model of main reaction which were proposed and tested in the previous papers,a kinetic model of the burning side reactions involving some key indexes of the main reaction was developed,and the parameters were determined by data fitting of the COx rate curves.The obtained kinetic model could describe the burning side reactions adequately.展开更多
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa...In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a co...Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.展开更多
The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to ...The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to terephthalic acid was severely inhibited when carbon dioxide exceeded a certain amount, the conversion of p-xylene decreased rapidly from 100.0% to 3.3% and the yield of terephthalic acid dropped from 42.6% to trace. Whereas the oxidation processes of p-Tolualdchyde to p-Toluic acid and 4-Carboxybenzaldehyde to tcrcphthalic acid were improved when a relative small amount of CO2 v/as added, Further investigation found that this negative effect may be caused by multiphase reactions emerging.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to deter...The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.展开更多
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S...Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were ...CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.展开更多
The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic aci...The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.展开更多
基金Hubei Provincial Natural Science Foundation of China (2023AFB0049)Scientific Research Fund Project of Wuhan Institute of Technology (K202232 and K2023028)Graduate Education Innovation Fund of Wuhan Institute of Technology (CX2023091)。
文摘The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.
基金the support received from the National Natural Science Foundation of China(Grant No.22372012,22261160640,and 22002009)the Natural Science Foundation of Hunan Province(Grant No.2023JJ20037 and 2021JJ40565)the Scientific Research Project of Hunan Provincial Department of Education(Grant No.22B0293)
文摘The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3).
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金financially supported by the National Natural Science Foundation of China(22268039)the Natural Science Foundation for Distinguished Young Scholars of Gansu Province(23JRRA682)。
文摘The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely controlled,and the acid sites on its outer surface were passivated by steam-assisted crystallization method,so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite.The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO_(x)metal oxides.The para-selectivity of p-xylene reached 76.2%at reaction temperature of 320℃,pressure of 3.0 MPa,and a flow rate of 2400 mL g^(-1)h^(-1)with an H_(2)/CO_(2) molar ratio of 3/1.Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite,which is conducive to the formation of p-xylene.Moreover,the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene.The reaction mechanism of CO_(2) hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory.The results showed that the CO_(2) to p-xylene followed a methanol-mediated route over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalysts.In addition,the catalyst showed no significant deactivation in the 100 h stability test.This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO_(2)hydrogenation.
基金supported by the National Natural Science Foundation of China(22162012 and 22202089)the Youth Jinggang Scholars Program in Jiangxi Province([2019]57)+6 种基金the Thousand Talents Plan of Jiangxi Province(jxsq2019201083)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20224ACB213005)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUSTQJBJ2019002)the Research Foundation of Education Bureau of Jiangxi Province of China(GJJ210833)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces(202022)the China Postdoctoral Science Foundation(2021M693893)the Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018)。
文摘Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金supported by the National Natural Science Foundation of China(21325731,51478241,21221004)~~
文摘Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.
基金Supported by the Natural National Science Foundation of China (20080672) and the Research Fund for the Doctoral Program of Higher Education of China (200803351111).
文摘During the liquid-phase oxidation of p-xylene,over-oxidation of reactant,intermediates and solvent to carbon dioxide and carbon monoxide is generally known as the burning side reaction.Batch and semi-continuous experiments were carried out,and the experimental data of the burning side reaction were analyzed and reported in this paper.The results showed that the rates of burning side reactions were proportional to the rates of the main reaction,but decreased with the increasing concentrations of reactant and intermediates.The inter-stimulative and competitive relationship between the burning side reaction and the main reaction was confirmed,and the rates of the burning side reaction could be described with some key indexes of the main reaction.According to the mechanism of the side reactions and the kinetics model of main reaction which were proposed and tested in the previous papers,a kinetic model of the burning side reactions involving some key indexes of the main reaction was developed,and the parameters were determined by data fitting of the COx rate curves.The obtained kinetic model could describe the burning side reactions adequately.
基金Supported by the Major State Basic Research Development Program of China (2012CB720500)the National Natural Science Foundation of China (Key Program: U1162202)+1 种基金the National Natural Science Foundation of China (General Program:61174118)Shanghai Leading Academic Discipline Project (B504)
文摘In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(6133301021276078)+3 种基金the National Science Fund for Outstanding Young Scholars(61222303)the Fundamental Research Funds for the Central Universities,Shanghai Rising-Star Program(13QH1401200)the Program for New Century Excellent Talents in University(NCET-10-0885)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.
文摘The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to terephthalic acid was severely inhibited when carbon dioxide exceeded a certain amount, the conversion of p-xylene decreased rapidly from 100.0% to 3.3% and the yield of terephthalic acid dropped from 42.6% to trace. Whereas the oxidation processes of p-Tolualdchyde to p-Toluic acid and 4-Carboxybenzaldehyde to tcrcphthalic acid were improved when a relative small amount of CO2 v/as added, Further investigation found that this negative effect may be caused by multiphase reactions emerging.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金supported by the National Natural Science Foundation of China(21333003,21577034)National Basic Research Program of China(2013CB933200)+1 种基金National High Technology Research and Development Program of China(2015AA034603)the Fundamental Research Funds for the Central Universities(WJ1514020)~~
文摘The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.
基金supported by the National Natural Science Foundation of China (21263015)the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province(20151BBE50006,20122BAB203009)~~
文摘Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
基金Projected supported by the National Natural Science Foundation of China (20271028) and Tianjin Natural Science Foundation(033602511)
文摘CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.
文摘The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.