Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is e...Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.展开更多
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ...The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.展开更多
In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soi...The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil.The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile.The p-y curves were obtained for two ground conditions:(a)lateral spreading of liquefied soil,and(b)liquefied soil in level ground.These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries,which are modelled as quay walls.The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier).The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed.Based on the results of these model tests,guidance for the construction of p-y curves for use in engineering practice is also provided.展开更多
In this study,centrifuge model tests of vertical and batter pile groups in liquefied sand were conducted on a centrifuge shaking table.The dynamic p-y curves for these pile groups before and during sand liquefaction w...In this study,centrifuge model tests of vertical and batter pile groups in liquefied sand were conducted on a centrifuge shaking table.The dynamic p-y curves for these pile groups before and during sand liquefaction were obtained from calculations based on test data.The results confirm that liquefaction contributes to a reduction in the energy consumption of pile foundations,with the degradation effect being more pronounced for batter pile groups.At shallow depths,the difference in the backbone gradients of the p-y curves after liquefaction for vertical and batter pile groups indicates that the lateral stiffness of a batter pile group is greater than that of a vertical pile group.As shaking intensity increases,the lateral stiffness of a vertical pile group increases with depth during the late stage of sand liquefaction.However,the lateral stiffness of a batter pile group during liquefaction does not vary with depth.The results of this study provide a reference for the seismic design of vertical and batter pile groups in liquefied soil.展开更多
Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper...Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.展开更多
This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total numbe...This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total number of 108 relative-permeability curves of rock samples from tight reservoirs were obtained,and the characteristics of relative-permeability curves were analyzed.The irreducible water saturation(Swi)mainly ranges from 20% to 70%,and the residual gas saturation(Sgr)ranges from 5% to 15% for 55% of the samples.The relative-permeability curves are categorized into six types(Category-Ⅰ to Ⅵ)by analyzing the following characteristics:The relative permeability of gas at Swi,the relative permeability of water at Sgr,and the relative permeability corresponding to the isotonic point.The relative permeability curves were normalized to facilitate numerical simulation and evaluate the impact of different types of curves on production performance.The results of simulation show significant difference in production performance for different types of relative-permeability curves:Category-Ⅰ corresponds to the case with best well performance,whereas Categories-Ⅴ and Ⅵ correspond to the cases with least production volume.The results of economic evaluation show a generalized permeability jail for Categories-Ⅳ,Ⅴ,and Ⅵ,and the permeability jail develops when the relative permeability of gas and water is below 0.06.This study further quantifies the range of micro-pore parameters corresponding to the generalized permeability jail for a tight sandstone reservoir.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the...The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the calculated result maybe cause a large error. For example, the relationship curve between oil displacement efficiency and water cut, which derived from the relative permeability curve in LD oilfield is uncertain in the shape of low water cut stage. If being directly normalized, the result of the interpretation of the water flooded zone is very high. In this study, two problems were solved: 1) The mathematical equation of the relationship between oil displacement efficiency and water cut was deduced, and repaired the lost data of oil displacement efficiency and water cut curve, which solve the problem of uncertain curve shape. After analysis, the reason why the curve is not available is that relative permeability curves are not classified and optimized;2) Two kinds of classification and evaluation methods of relative permeability curve were put forward, the direct evaluation method and the analogy method;it can get the typical relative permeability curve by identifying abnormal curve.展开更多
With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large ...With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage.展开更多
Crack growth rate curves are the fundamental material property for metal structures under fatigue loading. Although there are many crack growth rate curves available in the literature, few of them showed the capabilit...Crack growth rate curves are the fundamental material property for metal structures under fatigue loading. Although there are many crack growth rate curves available in the literature, few of them showed the capability to explain various special phenomena observed in tests. A modified constitutive relation recently proposed by McEvily and his co-workers showed very promising capability. This modified constitutive relation is further generalized by (1) introducing an unstable fracture condition; (2) defining a virtual strength to replace the yield stress; and (3) defining an overload and underload parameter. The performances of this general constitutive relation for fatigue crack growth is extensively studied and it is found that this general constitutive relation is able to explain various phenomena observed with particular strong capability on load sequence effect.展开更多
To investigate the correlation between environmental-meteorological factors and daily visits for acute otitis media(AOM)in Lanzhou,China.Methods:Data were collected in 2014e2016 by the Departments of Otolaryngology-He...To investigate the correlation between environmental-meteorological factors and daily visits for acute otitis media(AOM)in Lanzhou,China.Methods:Data were collected in 2014e2016 by the Departments of Otolaryngology-Head and Neck Surgery at two hospitals in Lanzhou.Relevant information,including age,sex and visiting time,was collected.Environmental data included air quality index,PM10,PM2.5,O3,CO,NO2 and SO2,and meteorological data included daily average temperature(T,C),daily mean atmospheric pressure(AP,hPa),daily average relative humidity(RH,%)and daily mean wind speed(W,m/s).The SPSS22.0 software was used to generate Spearman correlation coefficients in descriptive statistical analysis,and the R3.5.0 software was used to calculate relative risk(RR)and to obtain exposure-response curves.The relationship between meteorological-environmental parameters and daily AOM visits was summarized.Results:Correlations were identified between daily AOM visits and CO,O3,SO2,CO,NO2,PM2.5 and PM10 levels.NO2,SO2,CO,AP,RH and T levels significantly correlated with daily AOM visits with a lag exposure-response pattern.The effects of CO,NO2,SO2 and AP on daily AOM visits were significantly stronger compared to other factors(P<0.01).O3,W,T and RH were negatively correlated with daily AOM visits.The highest RR lagged by 3e4 days.Conclusions:The number of daily AOM visits appeared to be correlated with short-term exposure to mixed air pollutants and meteorological factors from 2014 through 2016 in Lanzhou.展开更多
In diagnostic trials, clustered data are obtained when several subunits of the same patient are observed. Within-cluster correlations need to be taken into account when analyzing such clustered data. A nonparametric m...In diagnostic trials, clustered data are obtained when several subunits of the same patient are observed. Within-cluster correlations need to be taken into account when analyzing such clustered data. A nonparametric method has been proposed by Obuchowski (1997) to estimate the Receiver Operating Characteristic curve area (AUC) for such clustered data. However, Obuchowski’s estimator gives equal weight to all pairwise rankings within and between cluster. In this paper, we modify Obuchowski’s estimate by allowing weights for the pairwise rankings vary across clusters. We consider the optimal weights for estimating one AUC as well as two AUCs’ difference. Our results in this paper show that the optimal weights depends on not only the within-patient correlation but also the proportion of patients that have both unaffected and affected units. More importantly, we show that the loss of efficiency using equal weight instead of our optimal weights can be severe when there is a large within-cluster correlation and the proportion of patients that have both unaffected and affected units is small.展开更多
The flat limit of rotational velocity (v<sub>φ</sub>) approximately equal to the “edge”-velocity of a galaxy is related to the baryonic mass (M<sub>B</sub>) via the T-F relationship w...The flat limit of rotational velocity (v<sub>φ</sub>) approximately equal to the “edge”-velocity of a galaxy is related to the baryonic mass (M<sub>B</sub>) via the T-F relationship with n ≈ 4. We explore the connection between mass and the limiting velocity in the framework of general relativity (GR) using the Weyl metric for axially-symmetric galaxies that are supported entirely by their rotational motion. While for small distances from the center, the Newtonian description is accurate as one moves beyond the (baryonic) edge of the galaxy, Lenz’s law and non-linearity of the gravitational field inherent in GR not only lead to a flat velocity (obviating its Keplerian fall), but also provide its tight log-log relationship with the enclosed (baryonic) mass.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law o...Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law of oil relative permeability on water cut. Based on the 269 relative permeability curves of Bohai oilfields, the distribution of oil index of Bohai oilfields were studied. On the basis, combined with Corey expression of relative permeability and fractional flow equation, the theoretical relationship between oil index and water cut increasing rate was established. Three end points of water cut increasing rate curve were proposed and the influence law between three end points and oil index was studied. The results show that the oil index has a linear relationship with three end points. When the value of water oil mobile ratio is large than 1, with the increase of oil index, maximum value of water cut increasing rate gradually increase. When the value of water oil mobile ratio is less than 10, oil index has great effect on recovery percent when water cut increasing rate reaches to the maximum value as well as water cut when water cut increasing rate reaches to the maximum value. The application of SS field shows that the theoretical value is consistent with the field data.展开更多
Permeability coefficients of fluids occupying the pore space of a porous medium have significant influence on the flow of these fluids through the porous medium. In the case of unsaturated soils, in addition to other ...Permeability coefficients of fluids occupying the pore space of a porous medium have significant influence on the flow of these fluids through the porous medium. In the case of unsaturated soils, in addition to other parameters such as void ratio, void distribution, particle size distribution and initial density the degree of saturation also affects the permeability coefficient of water. The degree of saturation, in unsaturated soil, is directly related to the matric suction of the soil through soil water characteristic curve. Matric suction is one of the two stress state variables widely used to characterize the deformation behavior of unsaturated soils. Therefore, it can be stated that both flow and deformation behaviors of unsaturated soil are affected by the permeability coefficient of water. Numerical modeling of coupled deformation-flow behavior of unsaturated soil requires a mathematical equation that relates the permeability coefficient to the degree of saturation. Since the parameters that affect the permeability coefficient of water in unsaturated soil have similar direct or indirect effects on the soil water characteristic curve, permeability can be effectively predicted using the soil water characteristic curve as done in statistical models. In this paper, a statistical model is proposed for the permeability of water in unsaturated soil using soil water characteristic curve of the soil. The calibrated parameters of the soil water characteristic curve are directly used in the prediction of permeability with- out additional calibration using measured permeability data. The predictive capability of the new equation is verified by matching the measured data of eight different soils found in the literature.展开更多
In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to...In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.展开更多
By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum ...By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.展开更多
Speckle decorrelation algorithm is a method using decorrelation curves to estimate the distance between two neighbor- ing ultrasound images. In this paper, we propose a new method to obtain specific decorrelation curv...Speckle decorrelation algorithm is a method using decorrelation curves to estimate the distance between two neighbor- ing ultrasound images. In this paper, we propose a new method to obtain specific decorrelation curves for distance estimation. First, several datasets of synthetic ultrasound (US) images are obtained by scanning different scatters. Second, based on the US datasets, we compute low-order moments and the elevational decorrelation curves. Finally, low-order moments are used to classify different scattering conditions. The suitable decorrelation curves can be acquired when the scattering style has been determined. With these steps, the relationship between low order moments and the decor- relation curves is established by the scattering conditions. This relationship proves to be efficient and applicable in the experiment section. The decorrelation curves chosen according to the rela- tionship also perform well in the distance estimation test.展开更多
基金Supported by the National Natural Science Foundation of China (No. 61070189, 60673065)the National High Technology Development Program (No. 2008AA01Z419)
文摘Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.
基金This paper was subsidized by the 15th National key Sci-Tech Project (NO.2001BA605A02-04-01)
文摘The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
文摘The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil.The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile.The p-y curves were obtained for two ground conditions:(a)lateral spreading of liquefied soil,and(b)liquefied soil in level ground.These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries,which are modelled as quay walls.The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier).The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed.Based on the results of these model tests,guidance for the construction of p-y curves for use in engineering practice is also provided.
基金Supported by:National Natural Science Foundation of China under Grant No.51778207the Project of Graduate Students′Innovative Ability Training of Hebei Province under Grant No.CXZZBS2019041the Natural Science Foundation of Hebei Province under Grant No.E2018202107。
文摘In this study,centrifuge model tests of vertical and batter pile groups in liquefied sand were conducted on a centrifuge shaking table.The dynamic p-y curves for these pile groups before and during sand liquefaction were obtained from calculations based on test data.The results confirm that liquefaction contributes to a reduction in the energy consumption of pile foundations,with the degradation effect being more pronounced for batter pile groups.At shallow depths,the difference in the backbone gradients of the p-y curves after liquefaction for vertical and batter pile groups indicates that the lateral stiffness of a batter pile group is greater than that of a vertical pile group.As shaking intensity increases,the lateral stiffness of a vertical pile group increases with depth during the late stage of sand liquefaction.However,the lateral stiffness of a batter pile group during liquefaction does not vary with depth.The results of this study provide a reference for the seismic design of vertical and batter pile groups in liquefied soil.
文摘Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.
基金the financial support from the National Natural Science Foundation of China(No.51774255 and 52174037).
文摘This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total number of 108 relative-permeability curves of rock samples from tight reservoirs were obtained,and the characteristics of relative-permeability curves were analyzed.The irreducible water saturation(Swi)mainly ranges from 20% to 70%,and the residual gas saturation(Sgr)ranges from 5% to 15% for 55% of the samples.The relative-permeability curves are categorized into six types(Category-Ⅰ to Ⅵ)by analyzing the following characteristics:The relative permeability of gas at Swi,the relative permeability of water at Sgr,and the relative permeability corresponding to the isotonic point.The relative permeability curves were normalized to facilitate numerical simulation and evaluate the impact of different types of curves on production performance.The results of simulation show significant difference in production performance for different types of relative-permeability curves:Category-Ⅰ corresponds to the case with best well performance,whereas Categories-Ⅴ and Ⅵ correspond to the cases with least production volume.The results of economic evaluation show a generalized permeability jail for Categories-Ⅳ,Ⅴ,and Ⅵ,and the permeability jail develops when the relative permeability of gas and water is below 0.06.This study further quantifies the range of micro-pore parameters corresponding to the generalized permeability jail for a tight sandstone reservoir.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
文摘The classification method of relative permeability curves is rarely reported, when relative permeability curves are applied;if the multiple relative permeability curves are normalized directly, but not classified, the calculated result maybe cause a large error. For example, the relationship curve between oil displacement efficiency and water cut, which derived from the relative permeability curve in LD oilfield is uncertain in the shape of low water cut stage. If being directly normalized, the result of the interpretation of the water flooded zone is very high. In this study, two problems were solved: 1) The mathematical equation of the relationship between oil displacement efficiency and water cut was deduced, and repaired the lost data of oil displacement efficiency and water cut curve, which solve the problem of uncertain curve shape. After analysis, the reason why the curve is not available is that relative permeability curves are not classified and optimized;2) Two kinds of classification and evaluation methods of relative permeability curve were put forward, the direct evaluation method and the analogy method;it can get the typical relative permeability curve by identifying abnormal curve.
文摘With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage.
文摘Crack growth rate curves are the fundamental material property for metal structures under fatigue loading. Although there are many crack growth rate curves available in the literature, few of them showed the capability to explain various special phenomena observed in tests. A modified constitutive relation recently proposed by McEvily and his co-workers showed very promising capability. This modified constitutive relation is further generalized by (1) introducing an unstable fracture condition; (2) defining a virtual strength to replace the yield stress; and (3) defining an overload and underload parameter. The performances of this general constitutive relation for fatigue crack growth is extensively studied and it is found that this general constitutive relation is able to explain various phenomena observed with particular strong capability on load sequence effect.
文摘To investigate the correlation between environmental-meteorological factors and daily visits for acute otitis media(AOM)in Lanzhou,China.Methods:Data were collected in 2014e2016 by the Departments of Otolaryngology-Head and Neck Surgery at two hospitals in Lanzhou.Relevant information,including age,sex and visiting time,was collected.Environmental data included air quality index,PM10,PM2.5,O3,CO,NO2 and SO2,and meteorological data included daily average temperature(T,C),daily mean atmospheric pressure(AP,hPa),daily average relative humidity(RH,%)and daily mean wind speed(W,m/s).The SPSS22.0 software was used to generate Spearman correlation coefficients in descriptive statistical analysis,and the R3.5.0 software was used to calculate relative risk(RR)and to obtain exposure-response curves.The relationship between meteorological-environmental parameters and daily AOM visits was summarized.Results:Correlations were identified between daily AOM visits and CO,O3,SO2,CO,NO2,PM2.5 and PM10 levels.NO2,SO2,CO,AP,RH and T levels significantly correlated with daily AOM visits with a lag exposure-response pattern.The effects of CO,NO2,SO2 and AP on daily AOM visits were significantly stronger compared to other factors(P<0.01).O3,W,T and RH were negatively correlated with daily AOM visits.The highest RR lagged by 3e4 days.Conclusions:The number of daily AOM visits appeared to be correlated with short-term exposure to mixed air pollutants and meteorological factors from 2014 through 2016 in Lanzhou.
文摘In diagnostic trials, clustered data are obtained when several subunits of the same patient are observed. Within-cluster correlations need to be taken into account when analyzing such clustered data. A nonparametric method has been proposed by Obuchowski (1997) to estimate the Receiver Operating Characteristic curve area (AUC) for such clustered data. However, Obuchowski’s estimator gives equal weight to all pairwise rankings within and between cluster. In this paper, we modify Obuchowski’s estimate by allowing weights for the pairwise rankings vary across clusters. We consider the optimal weights for estimating one AUC as well as two AUCs’ difference. Our results in this paper show that the optimal weights depends on not only the within-patient correlation but also the proportion of patients that have both unaffected and affected units. More importantly, we show that the loss of efficiency using equal weight instead of our optimal weights can be severe when there is a large within-cluster correlation and the proportion of patients that have both unaffected and affected units is small.
文摘The flat limit of rotational velocity (v<sub>φ</sub>) approximately equal to the “edge”-velocity of a galaxy is related to the baryonic mass (M<sub>B</sub>) via the T-F relationship with n ≈ 4. We explore the connection between mass and the limiting velocity in the framework of general relativity (GR) using the Weyl metric for axially-symmetric galaxies that are supported entirely by their rotational motion. While for small distances from the center, the Newtonian description is accurate as one moves beyond the (baryonic) edge of the galaxy, Lenz’s law and non-linearity of the gravitational field inherent in GR not only lead to a flat velocity (obviating its Keplerian fall), but also provide its tight log-log relationship with the enclosed (baryonic) mass.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
文摘Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law of oil relative permeability on water cut. Based on the 269 relative permeability curves of Bohai oilfields, the distribution of oil index of Bohai oilfields were studied. On the basis, combined with Corey expression of relative permeability and fractional flow equation, the theoretical relationship between oil index and water cut increasing rate was established. Three end points of water cut increasing rate curve were proposed and the influence law between three end points and oil index was studied. The results show that the oil index has a linear relationship with three end points. When the value of water oil mobile ratio is large than 1, with the increase of oil index, maximum value of water cut increasing rate gradually increase. When the value of water oil mobile ratio is less than 10, oil index has great effect on recovery percent when water cut increasing rate reaches to the maximum value as well as water cut when water cut increasing rate reaches to the maximum value. The application of SS field shows that the theoretical value is consistent with the field data.
文摘Permeability coefficients of fluids occupying the pore space of a porous medium have significant influence on the flow of these fluids through the porous medium. In the case of unsaturated soils, in addition to other parameters such as void ratio, void distribution, particle size distribution and initial density the degree of saturation also affects the permeability coefficient of water. The degree of saturation, in unsaturated soil, is directly related to the matric suction of the soil through soil water characteristic curve. Matric suction is one of the two stress state variables widely used to characterize the deformation behavior of unsaturated soils. Therefore, it can be stated that both flow and deformation behaviors of unsaturated soil are affected by the permeability coefficient of water. Numerical modeling of coupled deformation-flow behavior of unsaturated soil requires a mathematical equation that relates the permeability coefficient to the degree of saturation. Since the parameters that affect the permeability coefficient of water in unsaturated soil have similar direct or indirect effects on the soil water characteristic curve, permeability can be effectively predicted using the soil water characteristic curve as done in statistical models. In this paper, a statistical model is proposed for the permeability of water in unsaturated soil using soil water characteristic curve of the soil. The calibrated parameters of the soil water characteristic curve are directly used in the prediction of permeability with- out additional calibration using measured permeability data. The predictive capability of the new equation is verified by matching the measured data of eight different soils found in the literature.
文摘In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.
文摘By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.
基金Supported by the National Basic Research Program of China(2011CB707900)
文摘Speckle decorrelation algorithm is a method using decorrelation curves to estimate the distance between two neighbor- ing ultrasound images. In this paper, we propose a new method to obtain specific decorrelation curves for distance estimation. First, several datasets of synthetic ultrasound (US) images are obtained by scanning different scatters. Second, based on the US datasets, we compute low-order moments and the elevational decorrelation curves. Finally, low-order moments are used to classify different scattering conditions. The suitable decorrelation curves can be acquired when the scattering style has been determined. With these steps, the relationship between low order moments and the decor- relation curves is established by the scattering conditions. This relationship proves to be efficient and applicable in the experiment section. The decorrelation curves chosen according to the rela- tionship also perform well in the distance estimation test.