A ring R is called right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of every principal right ideal of R is generated by an idempotent. For a ring R, let G be a finite group of ring autom...A ring R is called right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of every principal right ideal of R is generated by an idempotent. For a ring R, let G be a finite group of ring automorphisms of R. We denote the fixed ring of R under G by RG. In this work, we investigated the right p.q.-Baer property of fixed rings under finite group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then we show that: 1) If R is G-p.q.-Baer, then RG is p.q.-Baer;2) If R is p.q.-Baer, then RG are p.q.-Baer.展开更多
In this paper, Let R is a ring, G be a finite group of ring automorphisms of R. R*G denote the skew group ring of R under G. We investigate the right p.q.-Baer property of skew group rings under finite group action, A...In this paper, Let R is a ring, G be a finite group of ring automorphisms of R. R*G denote the skew group ring of R under G. We investigate the right p.q.-Baer property of skew group rings under finite group action, Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R, then 1) R*G is p.q.-Baer if and only if R is G-p.q.-Baer;2) if R is p.q.-Baer, then R*G is p.q.-Baer.展开更多
Erceg in [1] extended the Hausdorff distance function betwen subsets of a set X to fuzzy settheory, and introduced a fuzzy pseudo-quasi-metric(p. q. metric) p: L^x xL^x -[0,∞] where L is acompletely distributive latt...Erceg in [1] extended the Hausdorff distance function betwen subsets of a set X to fuzzy settheory, and introduced a fuzzy pseudo-quasi-metric(p. q. metric) p: L^x xL^x -[0,∞] where L is acompletely distributive lattice, and the associated family of neighborhood mappings {Dr |r>O}. Thefuzzy metric space in Erceg's sense is denoted by (L^x, p, Dr) since there exists a one to one correspondence between fuzzy p. q. metrics and associatcd families of neighborhood mapping, a family{Dr|r>0}satisfying certain conditions is also callcd a (standard) fuzzy p. q metric. In [2] Liang defimed apointwise fuzzy p. q. metric d: P(L^x)×P(L^x)-[0, ∞) and applicd it to the construction of theproduct fuzzy metric. In this paper, we give axiomatic definitions of molcculewise and展开更多
Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power ser...Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]]...Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.展开更多
Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Ba...Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
In [6,11], A theory of pointwise pseudo-quasi-metrics was based on completely distributive lattices. In this paper a product pointwise p.q. metric function is constructed on the product of countably many molecular lat...In [6,11], A theory of pointwise pseudo-quasi-metrics was based on completely distributive lattices. In this paper a product pointwise p.q. metric function is constructed on the product of countably many molecular lattices by distance functions. Hence it is proved that countable product of pointwise pseudo-quasi-metric molecular lattices is pointwise pseudo-quasi-metrizable.展开更多
文摘A ring R is called right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of every principal right ideal of R is generated by an idempotent. For a ring R, let G be a finite group of ring automorphisms of R. We denote the fixed ring of R under G by RG. In this work, we investigated the right p.q.-Baer property of fixed rings under finite group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then we show that: 1) If R is G-p.q.-Baer, then RG is p.q.-Baer;2) If R is p.q.-Baer, then RG are p.q.-Baer.
文摘In this paper, Let R is a ring, G be a finite group of ring automorphisms of R. R*G denote the skew group ring of R under G. We investigate the right p.q.-Baer property of skew group rings under finite group action, Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R, then 1) R*G is p.q.-Baer if and only if R is G-p.q.-Baer;2) if R is p.q.-Baer, then R*G is p.q.-Baer.
文摘Erceg in [1] extended the Hausdorff distance function betwen subsets of a set X to fuzzy settheory, and introduced a fuzzy pseudo-quasi-metric(p. q. metric) p: L^x xL^x -[0,∞] where L is acompletely distributive lattice, and the associated family of neighborhood mappings {Dr |r>O}. Thefuzzy metric space in Erceg's sense is denoted by (L^x, p, Dr) since there exists a one to one correspondence between fuzzy p. q. metrics and associatcd families of neighborhood mapping, a family{Dr|r>0}satisfying certain conditions is also callcd a (standard) fuzzy p. q metric. In [2] Liang defimed apointwise fuzzy p. q. metric d: P(L^x)×P(L^x)-[0, ∞) and applicd it to the construction of theproduct fuzzy metric. In this paper, we give axiomatic definitions of molcculewise and
基金TRAPOYT(200280)the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
基金The Youth Foundation(QN2012-14)of Hexi University
文摘Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.
基金National Natural Science Foundation of China (10171082), TRAPOYT the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.
基金Supported by the National Natural Science Foundation of China (19971059)
文摘In [6,11], A theory of pointwise pseudo-quasi-metrics was based on completely distributive lattices. In this paper a product pointwise p.q. metric function is constructed on the product of countably many molecular lattices by distance functions. Hence it is proved that countable product of pointwise pseudo-quasi-metric molecular lattices is pointwise pseudo-quasi-metrizable.