目的探讨腺病毒介导p21^(WAF-1):联合GM-CSF基因对胃癌荷瘤裸鼠的抑瘤作用。方法将32只裸鼠建立人胃癌MKN-45细胞移植瘤动物模型。成瘤后动物随机平均分为4组:对照组、p21^(WAF-1)基因治疗组、GM-CSF基因治疗组、p21^(WAF-1)+GM-CSF...目的探讨腺病毒介导p21^(WAF-1):联合GM-CSF基因对胃癌荷瘤裸鼠的抑瘤作用。方法将32只裸鼠建立人胃癌MKN-45细胞移植瘤动物模型。成瘤后动物随机平均分为4组:对照组、p21^(WAF-1)基因治疗组、GM-CSF基因治疗组、p21^(WAF-1)+GM-CSF联合基因治疗组;分别由皮下瘤体内注射重组体腺病毒0.1 mL Ad-LacZ、Ad-p21、Ad-GM、Ad-p21+GM,每周1次,共3次,3个月后观察肿瘤抑制率、肿瘤体积和动物存活情况以及肿瘤组织病理切片。结果(1)联合基因治疗组动物的肿瘤生长受到明显抑制,与单独给予p21^(WAF-1)和GM-CSF基因治疗动物相比,抑制作用显著提高(P<0.05);(2)荷瘤小鼠生存期观察,与对照组相比,p21^(WAF-1)基因组和GM-CSF基因组有所延长,联合基因治疗组显著延长(P<0.01);(3)病理切片示各基因治疗组肿瘤组织均有出血、坏死和炎性细胞浸润,联合基因治疗组有片状坏死。结论p21^(WAF-1)和GM-CSF两种基因联合治疗胃癌,可以有效抑制肿瘤生长、延长生存期,为胃癌的治疗提供新的思路。展开更多
Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-vi...Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene ( reporter gene) and p21WAF-1/CIPI gee (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/ CIPI gene in transfected U251MG cell was examined by immunohistochemis-try staining. Results: The highest transfer rate of exogenous gene was 70% . After transfection with p21WAF-1/CIPI gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIPI gene can induce apoptosis of glioma cell and inhibit its growth.展开更多
AIM: To detect the effect of acid fibroblast growth factor (aFGF) on P53 and P21WAF-1 expression in rat intestine after ischemia-reperfusion (I-R) injury in order to explore the protective mechanisms of aFGF. MET...AIM: To detect the effect of acid fibroblast growth factor (aFGF) on P53 and P21WAF-1 expression in rat intestine after ischemia-reperfusion (I-R) injury in order to explore the protective mechanisms of aFGF. METHODS: Hale rats were randomly divided into four groups, namely intestinal ischemia-reperfusion group (R), aFGF treatment group (A), intestinal ischemia group (I), and sham-operated control group (C). In group I, the animals were killed after 45 min of superior mesenteric artery (SHA) occlusion. In groups R and A, the rats sustained for 45 min of SHA occlusion and were treated with normal saline (0.15 mL) and aFGF (20 μg/kg, 0.15 mL), then sustained at various times for up to 48 h after reperfusion. In group C, SHA was separated, but without occlusion. Apoptosis in intestinal villi was determined with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for RT- PCR to detect P53 and P21WAF-1 gene expression, but also for immunohistochemical analysis to detect P53 and P21WAF-1 protein expression and distribution. RESULTS: In histopathological study, ameliorated intestinal structures were observed at 2, 6, and 12 h after reperfusion in A group compared to R group. The apoptotic rates were (41.17±3.49)%, (42.83±5.23)%, and (53.33±6.92)% at 2, 6, and 12 h after reperfusion, respectively in A group, which were apparently lower than those in R group at their matched time points (50.67±6.95)%, (54.17±7.86)%, and (64.33±6.47)%, respectively, (P〈0.05)). The protein contents of P53 and P21WAF-1 were both significantly decreased in A group compared to R group (P〈0.05) at 2-12 h after reperfusion, while the mRNA levels of P53 and P21VVAF-1 in A group were obviously lower than those in R group at 6-12 h after reperfusion (P〈0.05). CONCLUSION: P53 and P21WAF-1 protein accumulations are associated with intestinal barrier injury induced by I-R insult, while intravenous aFGF can alleviate apoptosis of rat intestinal cells by inhibiting P53 and P21WAF-1 protein expression.展开更多
目的观察人参皂苷Rg1对光老化p53信号转导途径中相关基因损伤及蛋白表达水平的影响。方法采用8-MOP/UVA(8-methoxypsoralen and subsequent ultraviolet A irradiation)联合处理人皮肤成纤维细胞建立光老化模型,用流式细胞周期分析、SA-...目的观察人参皂苷Rg1对光老化p53信号转导途径中相关基因损伤及蛋白表达水平的影响。方法采用8-MOP/UVA(8-methoxypsoralen and subsequent ultraviolet A irradiation)联合处理人皮肤成纤维细胞建立光老化模型,用流式细胞周期分析、SA-β-半乳糖苷酶(senescence associatedβ-galactosidase)化学染色,免疫荧光及Western blot等方法检测人参皂苷Rg1对培养真皮成纤维细胞多项细胞衰老指标及p53信号途径中蛋白表达的影响。结果人参皂苷Rg1可明显抑制细胞和组织老化的指标表达(包括SA-β-Gal表达减少及细胞周期G1阻滞率降低);减少基因氧化应激损伤产物8-oxo-dG及老化相关蛋白p53,p21WAF-1及p16INK-4a的表达。结论人参皂苷Rg1可能通过缓解基因的氧化应激损伤,抑制相关信号转导,从而缓解细胞光老化进程。展开更多
The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous gene pCEP-p21WAF-1 into human hepatocellular carcinoma cell both in vitro and in vivo. After in vitro transduction of the ex...The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous gene pCEP-p21WAF-1 into human hepatocellular carcinoma cell both in vitro and in vivo. After in vitro transduction of the exogenous gene, the growth of the cell lines SMMC-7721 and BEL-7402 was significantly inhibited compared with the control. On day 8 the inhibition rates of the above cell lines reached 56.0% and 66.7%, respectively. The in vivo experiment showed that the growth of human hepatoma transplanted in nude mice injected with GE7 gene delivery system subcutaneously once a week for 3 weeks was remarkably inhibited compared with that of untrans-fected control. The average tumor weight of the experiment group was (0.083 ?0.043) g, while that of the control group was (0.28110.173) g. The difference is significant (P<0.05). It was indicated that GE7 gene delivery system could efficiently transduce exogenous gene pCEP-p21WAF-1 into hepatoma cell with high EGF receptor expression, and inhibit the cell growth with high efficacy both in vivo and in vitro.展开更多
Glioblastoma multiforme is considered one of the most common malignant primary intracranial tumors.Despite treatment with a combination of surgery,chemotherapy and radiotherapy,patients with glioblastoma multiform hav...Glioblastoma multiforme is considered one of the most common malignant primary intracranial tumors.Despite treatment with a combination of surgery,chemotherapy and radiotherapy,patients with glioblastoma multiform have poor prognosis.It has been widely accepted that the occurrence,progression,and even recurrence of glioblastoma multiforme strictly depends on the presence of glioma cancer stem cells.The presence of glioma stem cells reduces the efficacy of standard therapies,thus increasing the imperative to identify new targets and therapeutic strategies in glioblastoma patients.In this regard,the p21^(Cip1)pathway has been found to play an important role in the maintenance of the glioma stem cells.It has been shown that this pathway regulates cancer stem cell pool by preventing hyperproliferation and exhaustion.MicroRNAs,endogenous small non-coding RNAs,and long non-coding RNAs,regulate post-transcription gene expression.These are not only altered in glioma,but also in other cancer types,and are involved in tumor development and progression.Notably,they have also been shown to modulate the expression of proteins in the p21^(Cip1)signaling pathway.This review highlights the extent and complexity of cross-talk between microRNAs,long non-coding RNAs and the p21^(Cip1)pathway,and demonstrates how such interplay orchestrates the regulation of protein expression and functions in glioma and glioma stem cells.展开更多
文摘目的探讨腺病毒介导p21^(WAF-1):联合GM-CSF基因对胃癌荷瘤裸鼠的抑瘤作用。方法将32只裸鼠建立人胃癌MKN-45细胞移植瘤动物模型。成瘤后动物随机平均分为4组:对照组、p21^(WAF-1)基因治疗组、GM-CSF基因治疗组、p21^(WAF-1)+GM-CSF联合基因治疗组;分别由皮下瘤体内注射重组体腺病毒0.1 mL Ad-LacZ、Ad-p21、Ad-GM、Ad-p21+GM,每周1次,共3次,3个月后观察肿瘤抑制率、肿瘤体积和动物存活情况以及肿瘤组织病理切片。结果(1)联合基因治疗组动物的肿瘤生长受到明显抑制,与单独给予p21^(WAF-1)和GM-CSF基因治疗动物相比,抑制作用显著提高(P<0.05);(2)荷瘤小鼠生存期观察,与对照组相比,p21^(WAF-1)基因组和GM-CSF基因组有所延长,联合基因治疗组显著延长(P<0.01);(3)病理切片示各基因治疗组肿瘤组织均有出血、坏死和炎性细胞浸润,联合基因治疗组有片状坏死。结论p21^(WAF-1)和GM-CSF两种基因联合治疗胃癌,可以有效抑制肿瘤生长、延长生存期,为胃癌的治疗提供新的思路。
基金Supported by the National High Science and Technical Foundation of China(No. 102-12-02-05)
文摘Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIPI gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene ( reporter gene) and p21WAF-1/CIPI gee (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/ CIPI gene in transfected U251MG cell was examined by immunohistochemis-try staining. Results: The highest transfer rate of exogenous gene was 70% . After transfection with p21WAF-1/CIPI gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIPI gene can induce apoptosis of glioma cell and inhibit its growth.
基金Supported by the National Natural Science Foundation of China,No. 30400172, 30230370the National Basic Science and Development programme (973 programme, 2005 CB 522603)
文摘AIM: To detect the effect of acid fibroblast growth factor (aFGF) on P53 and P21WAF-1 expression in rat intestine after ischemia-reperfusion (I-R) injury in order to explore the protective mechanisms of aFGF. METHODS: Hale rats were randomly divided into four groups, namely intestinal ischemia-reperfusion group (R), aFGF treatment group (A), intestinal ischemia group (I), and sham-operated control group (C). In group I, the animals were killed after 45 min of superior mesenteric artery (SHA) occlusion. In groups R and A, the rats sustained for 45 min of SHA occlusion and were treated with normal saline (0.15 mL) and aFGF (20 μg/kg, 0.15 mL), then sustained at various times for up to 48 h after reperfusion. In group C, SHA was separated, but without occlusion. Apoptosis in intestinal villi was determined with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for RT- PCR to detect P53 and P21WAF-1 gene expression, but also for immunohistochemical analysis to detect P53 and P21WAF-1 protein expression and distribution. RESULTS: In histopathological study, ameliorated intestinal structures were observed at 2, 6, and 12 h after reperfusion in A group compared to R group. The apoptotic rates were (41.17±3.49)%, (42.83±5.23)%, and (53.33±6.92)% at 2, 6, and 12 h after reperfusion, respectively in A group, which were apparently lower than those in R group at their matched time points (50.67±6.95)%, (54.17±7.86)%, and (64.33±6.47)%, respectively, (P〈0.05)). The protein contents of P53 and P21WAF-1 were both significantly decreased in A group compared to R group (P〈0.05) at 2-12 h after reperfusion, while the mRNA levels of P53 and P21VVAF-1 in A group were obviously lower than those in R group at 6-12 h after reperfusion (P〈0.05). CONCLUSION: P53 and P21WAF-1 protein accumulations are associated with intestinal barrier injury induced by I-R insult, while intravenous aFGF can alleviate apoptosis of rat intestinal cells by inhibiting P53 and P21WAF-1 protein expression.
文摘目的观察人参皂苷Rg1对光老化p53信号转导途径中相关基因损伤及蛋白表达水平的影响。方法采用8-MOP/UVA(8-methoxypsoralen and subsequent ultraviolet A irradiation)联合处理人皮肤成纤维细胞建立光老化模型,用流式细胞周期分析、SA-β-半乳糖苷酶(senescence associatedβ-galactosidase)化学染色,免疫荧光及Western blot等方法检测人参皂苷Rg1对培养真皮成纤维细胞多项细胞衰老指标及p53信号途径中蛋白表达的影响。结果人参皂苷Rg1可明显抑制细胞和组织老化的指标表达(包括SA-β-Gal表达减少及细胞周期G1阻滞率降低);减少基因氧化应激损伤产物8-oxo-dG及老化相关蛋白p53,p21WAF-1及p16INK-4a的表达。结论人参皂苷Rg1可能通过缓解基因的氧化应激损伤,抑制相关信号转导,从而缓解细胞光老化进程。
文摘The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous gene pCEP-p21WAF-1 into human hepatocellular carcinoma cell both in vitro and in vivo. After in vitro transduction of the exogenous gene, the growth of the cell lines SMMC-7721 and BEL-7402 was significantly inhibited compared with the control. On day 8 the inhibition rates of the above cell lines reached 56.0% and 66.7%, respectively. The in vivo experiment showed that the growth of human hepatoma transplanted in nude mice injected with GE7 gene delivery system subcutaneously once a week for 3 weeks was remarkably inhibited compared with that of untrans-fected control. The average tumor weight of the experiment group was (0.083 ?0.043) g, while that of the control group was (0.28110.173) g. The difference is significant (P<0.05). It was indicated that GE7 gene delivery system could efficiently transduce exogenous gene pCEP-p21WAF-1 into hepatoma cell with high EGF receptor expression, and inhibit the cell growth with high efficacy both in vivo and in vitro.
基金PRIN 2017 and Fondazione Umberto Veronesi(Post-doctoral Fellowship 2019 to Morelli MB).
文摘Glioblastoma multiforme is considered one of the most common malignant primary intracranial tumors.Despite treatment with a combination of surgery,chemotherapy and radiotherapy,patients with glioblastoma multiform have poor prognosis.It has been widely accepted that the occurrence,progression,and even recurrence of glioblastoma multiforme strictly depends on the presence of glioma cancer stem cells.The presence of glioma stem cells reduces the efficacy of standard therapies,thus increasing the imperative to identify new targets and therapeutic strategies in glioblastoma patients.In this regard,the p21^(Cip1)pathway has been found to play an important role in the maintenance of the glioma stem cells.It has been shown that this pathway regulates cancer stem cell pool by preventing hyperproliferation and exhaustion.MicroRNAs,endogenous small non-coding RNAs,and long non-coding RNAs,regulate post-transcription gene expression.These are not only altered in glioma,but also in other cancer types,and are involved in tumor development and progression.Notably,they have also been shown to modulate the expression of proteins in the p21^(Cip1)signaling pathway.This review highlights the extent and complexity of cross-talk between microRNAs,long non-coding RNAs and the p21^(Cip1)pathway,and demonstrates how such interplay orchestrates the regulation of protein expression and functions in glioma and glioma stem cells.